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Preface

This book is an edited version of the review talks given in the Third Aegean
School on the Invisible Universe: Dark Matter and Dark Energy, held in Karfas
on Chios Island, Greece, from 26th of September to 1st of October 2005. The
aim of this book is not to present another proceedings volume, but rather an
advanced multiauthored textbook which meets the needs of both the postgrad-
uate students and the young researchers, in the fields of Modern Cosmology
and Astrophysics.

The issue of dark matter and dark energy is one of the central interest
in Astroparticle Physics, Astrophysics, Astronomy, and Modern Cosmology.
Much of observational data indicate that there is a missing matter and missing
energy in the Universe. Evidence of the existence of this unknown form of
matter and energy can be obtained from different sources. In Astrophysics,
the dynamics of galaxy formation and galaxy clusters can give information on
the amount of missing matter. In Astroparticle physics, particle candidates
were proposed from string theory and supersymmetry to identify the unknown
matter. In Cosmology, the recent data from Cosmic Microwave Background
(CMB) and Supernovae Observations strongly indicate that there is a large
amount of an unknown form of energy in the energy balance of the Universe.
The purpose of this book is to present these issues and discuss in detail the
physics involved.

The first part of the book presents the problem of missing matter of the
Universe as seen by Astroparticle Physics and Astrophysics. G. Lazaride’s
chapter reviews the main proposals of particle physics for the composition of
the dark matter in the universe. The lightest neutralino is the most popular
candidate constituent of dark matter. Axinos and gravitinos can also con-
tribute to dark matter. A model is presented which possesses a wide range
of parameters consistent with the data on dark matter abundance as well as
other phenomenological constraints. In view that many particle theories will
be tested in the next round experiments in large accelerators, such as the
Large Hadron Collider (LHC), a more phenomenological approach to dark
matter in elementary particle physics is adopted in the next chapter by A.
Lahanas. The interest in these experiments is that may provide candidates
for dark matter of supersymmetric origin.
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A more difficult task is undertaken in the next chapter: the direct detection
of supersymmetric dark matter. J. Vergados after reviewing supersymmetric
models with their parameters constrained from the recent data at low energies
and cosmological observations, is suggesting experiments of direct detection
of dark matter mainly through a neutralino-nucleus interaction.

The challenge of dark matter is addressed in the context of Astrophysics
by J. Silk’s chapter. It describes the confrontation of structure formation
with observation and it focuses on the detection of the most elusive com-
ponent, non–baryonic dark matter. It explains how galaxy formation theory
is driven by phenomenology and by numerical simulations of dark matter
clustering under gravity. Once the complications of star formation are incor-
porated, the theory becomes very complex. Semi-analytical perspectives of
the theory are presented that may shed some insight into the nature of galaxy
formation.

The second part of the book deals with the energy balance of the Universe.
In the first chapter by P. Tozzi, the basic procedures are presented to constrain
the cosmological parameters which they describe the energy content of the
Universe. Data from clusters of galaxies and their X-ray properties are used as
cosmological tools to deduce information on these parameters. The difficulties
in analysing galaxy redshift surveys data like the 2dF Galaxy Redshift Survey
(2dFGRS) and the Sloan Digital Sky survey (SDSS) are explained in W.
Percival’s chapter. A very interesting example is provided of joint analysis of
the latest CMB and large-scale structure data, leading to a set of cosmological
parameter constraints.

The chapter by R. Crittenden discusses the evidence for dark energy com-
ing from a wide variety of data. After reviewing the physics of the CMB,
it discusses the different methods that are used in determining the dark en-
ergy’s density, evolution, and clustering properties and the crucial role the
microwave background plays in all of these methods. L. Perivolaropoulos’s
chapter deals with another interesting manifestation of the presence of dark
energy in the Universe: the late time acceleration. It presents of the recent
observational data obtained from type Ia supernova surveys that support the
accelerating expansion of the universe. The methods for the analysis of the
data are reviewed and the theoretical implications obtained from their analysis
are discussed.

The last chapter of the second part of the book by M. Sami is a pre-
sentation of current theoretical models for dark energy. These models rely
on scalar field dynamics and this chapter focusses mainly on the underlying
basic features rather than on concrete scalar field models. The cosmological
dynamics of standard scalar fields, phantoms, and tachyon fields is developed
in detail. Scaling solutions are discussed emphasizing their importance in mod-
elling dark energy. The developed concepts are implemented in an example of
quintessential inflation.

The third part of the book discusses the issue of dark matter and dark
energy beyond the standard theory of General Relativity. Higher dimensional
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string and brane theories are employed and also theories that modify the
usual Newtonian dynamics. An introduction to high dimensional theories is
given in I. Antoniadis’ chapter. The basic idea is that the apparent weakness
of gravity can be accounted by the existence of large internal dimensions, in
the submillimeter region, and transverse to a braneworld where our universe
must be confined. The main properties of this scenario are reviewed and its
implications for observations at both particle colliders and in non-accelerator
gravity experiments are discussed.

These ideas are applied to Cosmology in R. Maartens’ chapter. As ex-
plained in L. Perivolaropoulos’ contribution an accelerating Universe requires
the presence of a dark energy field with effectively negative pressure. An alter-
native to dark energy is that gravity itself may behave differently from general
relativity on the largest scales, in such a way as to produce acceleration. In
this chapter an example of modified gravity is presented which is provided by
braneworld models that self-accelerate at late times. The challenges of dark
matter and dark energy in the context of string theory are discussed in N.
Mavromatos’s article. In this chapter the resolution of these issues in string
theory is briefly reviewed and a suggestion for the resolution of the dark energy
issue is discussed.

The most successful alternative to dark matter in bound gravitational
systems is the modified Newtonian dynamics, or MOND, which is discussed
in R. Sanders’ chapter. There, the various attempts to formulate MOND as
a modification of General Relativity are presented and the covariant theories
that have been proposed as a basis for this idea are explained. Finally, local
modifications of general relativity by making the Lagrangian an arbitrary
function of the Ricci scalar are presented in R. Woodard’s contribution. The
interest of such theories is that they can reproduce the current phase of cosmic
acceleration without dark energy.

The Third Aegean School and consequently this book became possible
with the kind support of many people and organizations. The School was or-
ganized by the Physics Department of the National Technical University of
Athens, and supported by the Physics Department of King’s College, Uni-
versity of London, the Institute of Cosmology and Gravitation, University
of Portsmouth, the Physics and Astronomy Department, University of Ten-
nessee. We also received financial support from the following sources and this
is gratefully acknowledged: Ministry of National Education and Religious Af-
fairs, Prefecture of Chios, Municipality of Chios.

We thank Giannis Gialas for his valuable assistance and help in organizing
the School in Chios and the University of the Aegean for providing technical
support. We thank also the other members of the Organizing Committee of
the School, Alex Kehagias, George Koutsoumbas, George Siopsis, and Nikolas
Tracas for their help in organizing the School. The administrative support
of the Third Aegean School was again taken up with great care by Mrs.
Evelyn Pappa. We acknowledge the help of Vasilis Zamarias, who designed
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and maintained the webside of the School and assisted us in resolving technical
issues in the process of editing this book.

Last, but not least, we are grateful to the staff of Springer-Verlag, respon-
sible for the Lecture Notes in Physics, whose abilities and help contributed
greatly to the appearance of this book.

Athens, October 2006 Lefteris Papantonopoulos
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Physics Division, School of Technology, Aristotle University of Thessaloniki,
Thessaloniki 54124, Greece
lazaride@eng.auth.gr

Abstract. We review the main proposals of particle physics for the composition of
the cold dark matter in the universe. Strong axion contribution to cold dark matter
is not favored if the Peccei-Quinn field emerges with non-zero value at the end of
inflation and the inflationary scale is superheavy since, under these circumstances,
it leads to unacceptably large isocurvature perturbations. The lightest neutralino
is the most popular candidate constituent of cold dark matter. Its relic abundance
in the constrained minimal supersymmetric standard model can be reduced to ac-
ceptable values by pole annihilation of neutralinos or neutralino-stau coannihilation.
Axinos can also contribute to cold dark matter provided that the reheat temperature
is adequately low. Gravitinos can constitute the cold dark matter only in limited
regions of the parameter space. We present a supersymmetric grand unified model
leading to violation of Yukawa unification and, thus, allowing an acceptable b-quark
mass within the constrained minimal supersymmetric standard model with μ > 0.
The model possesses a wide range of parameters consistent with the data on the
cold dark matter abundance as well as other phenomenological constraints. Also, it
leads to a new version of shifted hybrid inflation.

1.1 Introduction

The recent measurements of the Wilkinson microwave anisotropy probe
(WMAP) satellite [1] on the cosmic microwave background radiation (CMBR)
have shown that the matter abundance in the universe is Ωmh2 = 0.135+0.008

−0.009,
where Ωi = ρi/ρc with ρi being the energy density of the i-th species and
ρc the critical energy density of the universe and h is the present value of
the Hubble parameter in units of 100 km sec−1 Mpc−1. The baryon abun-
dance is also found by these measurements to be Ωbh

2 = 0.0224 ± 0.0009.
Consequently, the cold dark matter (CDM) abundance in the universe is
ΩCDMh2 = 0.1126+0.00805

−0.00904. The 95% confidence level (c.l.) range of this quan-
tity is then, roughly, 0.095 <∼ ΩCDMh2 <∼ 0.13. Taking h � 0.72, which is its
best-fit value from the Hubble space telescope (HST) [2], and assuming that
the total energy density of the universe is very close to its critical energy
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4 G. Lazarides

density (i.e. Ωtot � 1), as implied by WMAP, we conclude that about 22% of
the energy density of the present universe consists of CDM.

The question then is, what the nature, origin, and composition of this
important component of our universe is. Particle physics provides us with a
number of candidate particles out of which CDM can be made. These particles
appear naturally in various particle physics frameworks for reasons completely
independent from CDM considerations and are, certainly, not invented for the
sole purpose of explaining the presence of CDM in the universe.

The basic properties that such a candidate particle must satisfy are the
following: (i) it must be stable or very long-lived, which can be achieved by
an appropriate symmetry, (ii) it should be electrically and color neutral, as
implied by astrophysical constraints on exotic relics (like anomalous nuclei),
but can be interacting weakly, and (iii) it has to be non-relativistic, which is
usually guaranteed by assuming that it is adequately massive, although even
very light particles such as axions can be non-relativistic for different reasons.
So, what we need as constituent of CDM is a weakly interacting massive
particle. There are several possibilities, but we will concentrate here on the
major particle physics candidates which are the axion, the lightest neutralino,
the axino, and the gravitino (for other candidates, see e.g. [3]). Note that the
last three particles exist only in supersymmetric (SUSY) theories.

In Sect. 1.2, we examine the possibility that the axions are constituents of
CDM. Section 1.3 is devoted to outlining the salient features of the minimal
supersymmetric standard model (MSSM), which will be used as a basic frame
for discussing SUSY CDM. In Sect. 1.4, we summarize the calculation of the
relic abundance of the lightest neutralino, which is normally the lightest su-
persymmetric particle (LSP), and investigate the circumstances under which
it can account for the CDM in the universe. In Sects. 1.5 and 1.6, we discuss,
respectively, axinos and gravitinos as constituents of CDM. In Sect. 1.7, we
present a SUSY grand unified theory (GUT) model which solves the bottom-
quark mass problem by naturally and modestly violating the exact unification
of the third generation Yukawa couplings. We study the parameter space of
the model which is allowed by neutralino dark matter considerations as well as
some other phenomenological constraints. Finally, in Sect. 1.8, we summarize
our conclusions.

1.2 Axions

The most natural solution to the strong CP problem (i.e. the apparent absence
of CP violation in strong interactions implied by the experimental bound on
the electric dipole moment of the neutron) is the one provided by a Peccei-
Quinn (PQ) symmetry [4]. This is a global U(1) symmetry, U(1)PQ, which
carries QCD anomalies and is spontaneously broken at a scale fa, the so-called
axion decay constant or simply PQ scale. Astrophysical [5] and cosmological
constraints imply that 109 GeV <∼ fa <∼ 1012 GeV. The upper bound originates
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[6, 7] from the requirement that the relic energy density of axions does not
overclose the universe. It should be noted, however, that this upper bound
can be considerably relaxed if the axions are diluted [7, 8, 9] by entropy
generation after their production at the QCD phase transition (for more recent
applications of this dilution mechanism, see e.g. [10]).

The axion is a pseudo Nambu-Goldstone boson corresponding to the phase
of the complex PQ field, which breaks U(1)PQ by its vacuum expectation value
(VEV). After the end of inflation [11], this phase appears homogenized over
the universe (supposing that the PQ field is non-zero) with a value θ, which
is known as the initial misalignment angle. Naturalness suggests that θ is of
order unity. This angle remains frozen until the QCD phase transition, where
the QCD instantons come into play. They break explicitly the PQ symmetry
to a discrete subgroup [12] since this symmetry carries QCD anomalies. So, a
sinusoidal potential for the phase of the PQ field is generated and this phase
starts oscillating coherently about a minimum of the potential. The resulting
state resembles pressureless matter consisting of static axions with mass ma ∼
Λ2

QCD/fa, where ΛQCD ∼ 200 MeV is the QCD scale. For fa ∼ 1012 GeV,
the mass of the axion ma ∼ 10−5 eV. Note that axions, although very light,
are good candidates for being constituents of the CDM in the universe since
they are produced at rest. Also, they are very weakly interacting since their
interactions are suppressed by the axion decay constant fa.

The relic abundance of axions can be calculated by using the formulae
of [13], where we take the QCD scale ΛQCD = 200 MeV and ignore the
uncertainties for simplicity. We find

Ωah
2 ≈ θ2

(
fa

1012 GeV

)1.175

(1.1)

(note that a primordial magnetic helicity, may [14] influence this abundance).
So, for natural values of θ ∼ 0.1 and fa ∼ 1012 GeV, axions can contribute
significantly to CDM, which can even consist solely of axions.

The main disadvantage of axionic dark matter is that it leads to isocur-
vature perturbations if the PQ field emerges with non-zero (homogeneous)
value at the end of inflation. Indeed, during inflation, the angle θ acquires a
superhorizon spectrum of perturbations as all the almost massless degrees of
freedom. At the QCD phase transition, these perturbations turn into isocurva-
ture perturbations in the axion energy density, which means that the partial
curvature perturbation in axions is different than the one in photons. The
recent results of WMAP [1] put stringent bounds [15, 16, 17] on the possible
isocurvature perturbation. So, a large axion contribution to CDM is disfa-
vored in models where the inflationary scale is superheavy (i.e. of the order
of the SUSY GUT scale) and the PQ field is non-zero at the end of inflation.

We now wish to turn to the discussion of the main SUSY candidates for
dark matter: the lightest neutralino χ̃, the axino ã and the gravitino G̃. We
will consider them mainly within the simplest SUSY framework, which is the
MSSM. It is, thus, important to first outline the basics of MSSM.
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1.3 Salient Features of MSSM

We consider the MSSM embedded in some general SUSY GUT model. We
further assume that the GUT gauge group breaking down to the standard
model (SM) gauge group GSM occurs in one step at a scale MGUT ∼ 1016 GeV,
where the gauge coupling constants of strong, weak, and electromagnetic
interactions unify. Ignoring the Yukawa couplings of the first and second gen-
eration, the effective superpotential below MGUT is

W = εij(−htH
i
2q
j
3t
c + hbH

i
1q
j
3b
c + hτH

i
1l
j
3τ
c − μHi

1H
j
2) , (1.2)

where q3 = (t, b) and l3 = (ντ , τ) are the quark and lepton SU(2)L doublet left
handed superfields of the third generation and tc, bc, and τc the corresponding
SU(2)L singlets. Also, H1, H2 are the electroweak Higgs superfields and ε the
2× 2 antisymmetric matrix with ε12 = +1. The gravity-mediated soft SUSY-
breaking terms in the scalar potential are given by

Vsoft =
∑
a,b

m2
abφ

∗
aφb+

[
εij(−AthtH

i
2q̃
j
3 t̃
c + AbhbH

i
1q̃
j
3b̃
c + AτhτH

i
1 l̃
j
3τ̃
c −BμHi

1H
j
2) + h.c.

]
,

(1.3)
where the sum is taken over all the complex scalar fields φa and tildes denote
superpartners. The soft gaugino mass terms in the Lagrangian are

Lgaugino =
1
2

(
M1B̃B̃ + M2

3∑
r=1

W̃rW̃r + M3

8∑
a=1

g̃ag̃a + h.c.

)
, (1.4)

where B̃, W̃r and g̃a are the bino, winos and gluinos respectively.
The Lagrangian of MSSM is invariant under a discrete Z2 matter parity

symmetry under which all “matter” (i.e. quark and lepton) superfields change
sign. Combining this symmetry with the Z2 fermion number symmetry under
which all fermions change sign, we obtain the discrete Z2 R-parity symmetry
under which all SM particles are even, while all sparticles are odd. By virtue of
R-parity conservation, the LSP is stable and, thus, can contribute to the CDM
in the universe. It is important to note that matter parity is vital for MSSM
to avoid baryon- and lepton-number-violating renormalizable couplings in the
superpotential, which would lead to highly undesirable phenomena such as
very fast proton decay. So, the possibility of having the LSP as CDM candidate
is not put in by hand, but arises naturally from the very structure of MSSM.

The SUSY-breaking parameters mab, At, Ab, Aτ , B, and Mi (i = 1, 2, 3) are
all of the order of the soft SUSY-breaking scale MSUSY ∼ 1 TeV, but are oth-
erwise unrelated in the general case. However, if we assume that soft SUSY
breaking is mediated by minimal supergravity (mSUGRA), i.e. supergrav-
ity with minimal Kähler potential, we obtain soft terms which are universal
“asymptotically” (i.e. at MGUT). In particular, we obtain a common scalar
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mass m0, a common trilinear scalar coupling A0, and a common gaugino mass
M1/2. The MSSM supplemented by universal boundary conditions is known as
constrained MSSM (CMSSM) [18]. It is true that mSUGRA implies two more
asymptotic relations: B0 = A0 −m0 and m0 = m3/2, where B0 = B(MGUT)
and m3/2 is the (asymptotic) gravitino mass. These extra conditions are usu-
ally not included in the CMSSM. Imposing them, we get the so-called very
CMSSM [19], which is a very restrictive version of MSSM and will not be
considered in these lectures.

The CMSSM can be further restricted by imposing asymptotic Yukawa
unification (YU) [20], i.e. the equality of all three Yukawa coupling constants
of the third family at MGUT:

ht(MGUT) = hb(MGUT) = hτ (MGUT) ≡ h0 . (1.5)

Exact YU, which makes the CMSSM considerably more predictive, can be
obtained in GUTs based on a gauge group such as SO(10) or E6 under which
all the particles of one family belong to a single representation with the addi-
tional requirement that the masses of the third family fermions arise primarily
from their unique Yukawa coupling to a single superfield representation which
predominantly contains the electroweak Higgs superfields. It should be noted
that exact YU in the CMSSM leads to unacceptable values for the bottom-
quark mass mb and, thus, must be corrected in order to become consistent
with observations. We will ignore this problem for the moment, but we will
return to it in Sect. 1.7.

Now, we assume that our effective theory below MGUT is the CMSSM
with YU. This theory depends on the following parameters (μ0 = μ(MGUT)):

m0, M1/2, A0, μ0, B0, αGUT, MGUT, h0, tanβ ,

where αGUT ≡ g2
GUT/4π with gGUT being the GUT gauge coupling constant

and tanβ ≡ 〈H2〉/〈H1〉 is the ratio of the two electroweak VEVs. The pa-
rameters αGUT and MGUT are evaluated consistently with the experimental
values of the electromagnetic and strong fine-structure constants αem and αs,
and the sine-squared of the Weinberg angle sin2 θW at MZ . To this end, we
integrate [21] numerically the renormalization group equations (RGEs) for the
MSSM at two loops in the gauge and Yukawa coupling constants from MGUT

down to a common but variable [22] SUSY threshold MSUSY ≡ √mt̃1mt̃2 (t̃1,2
are the stop-quark mass eigenstates). From MSUSY to MZ , the RGEs of the
non-SUSY SM are used. The set of RGEs needed for our computation can be
found in many references (see e.g. [23]). We take αs(MZ) = 0.12±0.001 which,
as it turns out, leads to gauge coupling unification at MGUT with an accuracy
better than 0.1%. So, we can assume exact unification once the appropriate
SUSY particle thresholds are taken into account.

The unified third generation Yukawa coupling constant h0 at MGUT

and the value of tanβ at MSUSY are estimated using the experimental in-
puts for the top-quark mass mt(mt) = 166 GeV and the τ -lepton mass
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mτ (MZ) = 1.746 GeV. Our integration procedure of the RGEs relies [21] on
iterative runs of these equations from MGUT to low energies and back for
every set of values of the input parameters until agreement with the experi-
mental data is achieved. The SUSY corrections to mτ are taken from [24] and
incorporated at MSUSY.

Assuming radiative electroweak symmetry breaking, we can express the
values of the parameters μ (up to its sign) and B (or, equivalently, the mass
mA of the CP -odd neutral Higgs boson A) at MSUSY in terms of the other
input parameters by minimizing the tree-level renormalization group (RG)
improved potential [25] at MSUSY. The resulting conditions are

μ2 =
m2
H1
−m2

H2
tan2 β

tan2 β − 1
− 1

2
M2
Z , sin 2β =

2Bμ

m2
H1

+ m2
H2

+ 2μ2
≡ 2Bμ

m2
A

,

(1.6)
where mH1 , mH2 are the soft SUSY-breaking scalar Higgs masses. We can im-
prove the accuracy of these conditions by including the full one-loop radiative
corrections to the potential from [24] at MSUSY. We find that the corrections
to μ and mA from the full one-loop effective potential are minimized [22, 26]
by our choice of MSUSY. So, a much better accuracy is achieved by using this
variable SUSY threshold rather than a fixed one. Furthermore, we include
in our calculation the two-loop radiative corrections to the masses mh and
mH of the CP -even neutral Higgs bosons h and H . These corrections are
particularly important for the mass of the lightest CP -even neutral Higgs bo-
son h. Finally, the SUSY corrections to mb are also included at MSUSY using
the relevant formulae of [24]. As already mentioned, the predicted value of
the bottom-quark mass is not compatible with experiment. However, we will
ignore this problem for the moment. The sign of μ is taken to be positive,
since the μ < 0 case is excluded because it leads [27, 28] to a neutralino relic
abundance which is well above unity, thereby overclosing the universe, for all
mA’s permitted by b → sγ. We are left with m0, M1/2 and A0 as free input
parameters.

The LSP is the lightest neutralino χ̃. The mass matrix for the four neu-
tralinos is⎛

⎜⎜⎜⎜⎜⎜⎝

M1 0 −MZsW cosβ MZsW sinβ

0 M2 MZcW cosβ −MZcW sinβ

−MZsW cosβ MZcW cosβ 0 −μ

MZsW sinβ −MZcW sinβ −μ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.7)

in the (−iB̃,−iW̃3, H̃1, H̃2) basis. Here, sW = sin θW , cW = cos θW , and
M1, M2 are the mass parameters of B̃, W̃3 in (1.4). In CMSSM, the lightest
neutralino turns out to be an almost pure bino B̃.

The LSPs are stable due to the presence of the unbroken R-parity, but
can annihilate in pairs since this symmetry is a discrete Z2 symmetry. This
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reduces their relic abundance in the universe. If there exist sparticles with
masses close to the mass of the LSP, their coannihilation [29] with the LSP
leads to a further reduction of the LSP relic abundance. It should be noted that
the number density of these sparticles is not Boltzmann suppressed relative to
the LSP number density. They eventually decay yielding an equal number of
LSPs and, thus, contributing to the relic abundance of the LSPs. Of particular
importance is the next-to-LSP (NLSP), which, in CMSSM, turns out to be
the lightest stau mass eigenstate τ̃2. Its mass is obtained by diagonalizing the
stau mass-squared matrix

(
m2
τ + m2

τ̃L
+ M2

Z(− 1
2 + s2

W ) cos 2β mτ (Aτ − μ tanβ)

mτ (Aτ − μ tanβ) m2
τ + m2

τ̃R
−M2

Zs
2
W cos 2β

)
(1.8)

in the gauge basis (τ̃L, τ̃R). Here, mτ̃L[R] is the soft SUSY-breaking mass of
the left [right] handed stau τ̃L[R] and mτ the tau-lepton mass. The stau mass
eigenstates are

(
τ̃1

τ̃2

)
=

(
cos θτ̃ sin θτ̃

− sin θτ̃ cos θτ̃

)(
τ̃L

τ̃R

)
, (1.9)

where θτ̃ is the τ̃L − τ̃R mixing angle.
The large values of b and τ Yukawa coupling constants implied by YU cause

soft SUSY-breaking masses of the third generation squarks and sleptons to run
(at low energies) to lower physical values than the corresponding masses of the
first and second generation. Furthermore, the large values of tanβ implied by
YU lead to large off-diagonal mixings in the sbottom and stau mass-squared
matrices. These effects reduce further the physical mass of the lightest stau,
which is the NLSP. Another effect of the large values of the b and τ Yukawa
coupling constants is the reduction of the mass mA of the CP -odd neutral
Higgs boson A and, consequently, the other Higgs boson masses to smaller
values.

1.4 Neutralino Relic Abundance

We now turn to the calculation of the cosmological relic abundance of the
lightest neutralino χ̃ (almost pure B̃) in the CMSSM with YU according to
the standard cosmological scenario (for non-standard scenaria, see e.g. [30]).
In general, all sparticles contribute to Ωχ̃h

2, since they eventually turn into
LSPs, and all the (co)annihilation processes must be considered. The most
important contributions, however, come from the LSP and the NLSP. So, in
the case of the CMSSM, we should concentrate on χ̃ (LSP) and τ̃2 (NLSP)
and consider the coannihilation of χ̃ with τ̃2 and τ̃∗

2 . The important role of
the coannihilation of the LSP with sparticles carrying masses close to its
mass in the calculation of the LSP relic abundance has been pointed out by
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many authors (see e.g. [21, 29, 31, 32, 33]). Here, we will use the method
of [29], which was also used in [21]. Note that our analysis can be readily
applied to any MSSM scheme where the LSP and NLSP are the bino and
stau respectively. In particular, it applies to the CMSSM without YU, where
we have tanβ as an extra free input parameter.

The relevant quantity, in our case, is the total number density

n = nχ̃ + nτ̃2 + nτ̃∗
2
, (1.10)

since the τ̃2’s and τ̃∗
2 ’s decay into χ̃’s after freeze-out. At cosmic temperatures

relevant for freeze-out, the scattering rates of these (non-relativistic) sparticles
off particles in the thermal bath are much faster than their annihilation rates
since the (relativistic) particles in the bath are considerably more abundant.
Consequently, the number densities ni (i = χ̃, τ̃2, τ̃∗

2 ) are proportional to their
equilibrium values neq

i to a good approximation, i.e. ni/n ≈ neq
i /neq ≡ ri. The

Boltzmann equation (see e.g. [34]) is then written as

dn

dt
= −3Hn− 〈σeffv〉(n2 − (neq)2) , (1.11)

where H is the Hubble parameter, v is the “relative velocity” of the annihi-
lating particles, 〈· · ·〉 denotes thermal averaging and σeff is the effective cross
section defined by

σeff =
∑
i,j

σijrirj (1.12)

with σij being the total cross section for particle i to annihilate with particle
j averaged over initial spin states. In our case, σeff takes the following form

σeff = σχ̃χ̃rχ̃rχ̃ + 4σχ̃τ̃2rχ̃rτ̃2 + 2(στ̃2τ̃2 + στ̃2 τ̃∗
2
)rτ̃2rτ̃2 . (1.13)

For ri, we use the non-relativistic approximation

ri(x) =
gi(1 + Δi)

3
2 e−Δix

geff
, (1.14)

geff(x) =
∑
i

gi(1 + Δi)
3
2 e−Δix , Δi =

mi −mχ̃

mχ̃
. (1.15)

Here gi = 2, 1, 1 (i = χ̃, τ̃2, τ̃∗
2 ) is the number of degrees of freedom of the i-th

particle with mass mi and x = mχ̃/T with T being the photon temperature.
Using Boltzmann equation (which is depicted in (1.11)), we can calculate

the relic abundance of the LSP at the present cosmic time. It has been found
[29, 34] to be given by

Ωχ̃h
2 ≈ 1.07× 109 GeV−1

g
1
2∗ MP x−1

F σ̂eff

(1.16)
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with
σ̂eff ≡ xF

∫ ∞

xF

〈σeffv〉x−2dx . (1.17)

Here MP � 1.22×1019 GeV is the Planck scale, g∗ � 81 is the effective number
of massless degrees of freedom at freeze-out [34] and xF = mχ̃/TF with TF
being the freeze-out photon temperature calculated by solving iteratively the
equation [34, 35]

xF = ln
0.038 geff(xF )MP (c + 2) cmχ̃ 〈σeffv〉(xF )

g
1
2∗ x

1
2
F

. (1.18)

The constant c is chosen to be equal to 1/2 [35]. The freeze-out temperatures
which we obtain here are of the order of mχ̃/25 and, thus, our non-relativistic
approximation (see (1.14)) is a posteriori justified.

Away from s-channel poles and final-state thresholds, the quantities σijv
are well approximated by applying the non-relativistic Taylor expansion up
to second order in the relative velocity v:

σijv = aij + bijv
2 . (1.19)

Actually, this corresponds [31] to an expansion in s and p waves. The thermally
averaged cross sections are then easily calculated

〈σijv〉(x) =
x

3
2

2
√
π

∫ ∞

0

dvv2(σijv)e−
xv2
4 = aij + 6

bij
x

. (1.20)

Here, we approximated the masses of the incoming particles by the neu-
tralino mass, i.e. mi = mj = mχ̃. The reduced mass of the incoming particles
is then equal to mχ̃/2. We also thermally averaged over the relative velocity
rather than the separate velocities of the incoming particles, which would be
more accurate. Using (1.12), (1.13), (1.17), and (1.20), one obtains

σ̂eff =
∑
(ij)

(α(ij)aij + β(ij)bij) ≡
∑
(ij)

σ̂(ij) , (1.21)

where we sum over (ij) = (χ̃χ̃), (χ̃τ̃2), and (τ̃2τ̃
(∗)
2 ) with a

τ̃2τ̃
(∗)
2

= aτ̃2τ̃2+aτ̃2τ̃∗
2
,

b
τ̃2τ̃

(∗)
2

= bτ̃2τ̃2 + bτ̃2τ̃∗
2
, and α(ij), β(ij) given by

α(ij) = c(ij)xF

∫ ∞

xF

dx

x2
ri(x)rj(x) , β(ij) = 6c(ij)xF

∫ ∞

xF

dx

x3
ri(x)rj(x) .

(1.22)
Here c(ij) = 1, 4, 2 for (ij) = (χ̃χ̃), (χ̃τ̃2), and (τ̃2τ̃

(∗)
2 ) respectively.

It should be emphasized that, near s-channel poles or final-state thresholds,
the Taylor expansion in (1.19) fails [29, 36] badly and, thus, the thermal
average in (1.20) has to be calculated accurately by numerical methods. Also,
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for better accuracy, we should use fully relativistic formulae instead of the
non-relativistic expressions in (1.13), (1.14), and (1.20). Finally, in (1.20), we
must take the thermal average over the two initial particle velocities vi and
vj separately and not just over their relative velocity v. The masses of the
incoming particles should also be taken different mi 
= mj . After all these
improvements, (1.20) takes [16] the form

〈σijv〉 =
1

2m2
im

2
jTK2

(
mi

T

)
K2

(mj

T

)
∫ ∞

(mi+mj)2
dsK1

(√
s

T

)
p2
ij(s)
√

s σij(s) ,

(1.23)
where Kn are Bessel functions, s the usual Mandelstam variable,

p2
ij(s) =

s

4
−

m2
i + m2

j

2
+

(m2
i −m2

j)
2

4s
, (1.24)

and

σij(s) =
1

4
√
spij(s)

∫
d3p′

(2π)3E′
d3p′′

(2π)3E′′ (2π)4δ4(pi+pj−p′−p′′)|Tij |2 (1.25)

with p′, p′′, E′, E′′ being the 3-momenta and energies of the outgoing particles
and |Tij |2 the squared transition matrix element summed over final-state spins
and averaged over initial-state spins. Summation over all final states is implied.

The relevant final states and Feynman diagrams for χ̃− τ̃2 (co)annihilation
are listed in Table 1.1. The exchanged particles are indicated for each pair

Table 1.1. Feynman diagrams

Initial State Final States Diagrams

χ̃χ̃ f f̄ s(h, H, A, Z), t(f̃), u(f̃)

hh, hH, HH, HA, AA, ZA, ZZ s(h, H), t(χ̃), u(χ̃)

hA, hZ, HZ s(A,Z), t(χ̃), u(χ̃)

H+H−, W +W− s(h, H,Z), t(χ̃±), u(χ̃±)

W±H∓ s(h, H,A), t(χ̃±), u(χ̃±)

χ̃τ̃2 τh, τH, τZ s(τ ), t(τ̃1,2)

τA s(τ ), t(τ̃1)

τγ s(τ ), t(τ̃2)

τ̃2τ̃2 ττ t(χ̃), u(χ̃)

τ̃2τ̃
∗
2 hh, hH, HH, ZZ s(h, H), t(τ̃1,2), u(τ̃1,2), c

AA s(h, H), t(τ̃1), u(τ̃1), c

H+H−, W +W− s(h, H, γ, Z), t(ν̃τ ), c

γγ, γZ t(τ̃2), u(τ̃2), c

tt̄, bb̄ s(h, H, γ, Z)

τ τ̄ s(h, H, γ, Z), t(χ̃)

uū, dd̄, eē s(γ, Z)
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of initial and final states. The symbols s(x, y, ...), t(x, y, ...), and u(x, y, ...)
denote tree-level graphs in which the particles x, y, ... are exchanged in the s-,
t-, and u-channel respectively. The symbol c stands for “contact” diagrams
with all four external legs meeting at a vertex. The charged Higgs bosons
are denoted as H±, while f stands for all the matter fermions (quarks and
leptons) and e, u, and d represent the first and second generation charged
leptons, up-, and down-type quarks respectively. The bars denote the anti-
fermions, χ̃± are the charginos, and ν̃τ is the superpartner of the τ -neutrino.
We have included all possible χ̃− χ̃ annihilation processes (see e.g. [38]), but
only the most important χ̃− τ̃2, τ̃2 − τ̃2, and τ̃2 − τ̃∗

2 coannihilation processes
from [21, 39] (for a complete list see e.g. [40]), which are though adequate for
giving accurate results for all values of tanβ, including the large ones. Some
of the diagrams listed here have not been considered in previous works [32, 33]
with small tanβ.

The χ̃− χ̃ annihilation via an A- or H-pole exchange in the s-channel can
be [41] very important especially in the CMSSM with large tanβ. As tanβ
increases, the Higgs boson masses mA and mH decrease due to the fact that
hb increases and, thus, its influence on the RG running of these masses is
enhanced. As a consequence, mA and mH approach 2mχ̃ and the neutralino
pair annihilation via an A- or H-pole exchange in the s-channel is resonantly
enhanced. The contribution from the H pole is p-wave suppressed as one
can show [31] using CP invariance (recall that the p wave is suppressed by
xF ∼ 25). Therefore, the dominant contribution originates from the A pole
with the dominant decay mode being the one to bb̄ since, for large tanβ,
the Abb̄ coupling is enhanced. We find [42] that there exists a region in the
parameter space of the CMSSM corresponding to large values of tanβ where
the χ̃ − χ̃ annihilation via an A pole reduces drastically the relic neutralino
abundance and, thus, makes it possible to satisfy the WMAP constraint on
CDM (note that, generically, Ωχ̃h

2 comes out too large).
As we already mentioned, near the A pole, the partial wave (or Taylor)

expansion in (1.19) and (1.20) fails [29, 36] badly. So, the thermal averaging
must by performed exactly using numerical methods and employing the for-
mulae in (1.23), (1.24), and (1.25). In order to achieve good accuracy, it is also
important to include the one-loop QCD corrections [43] to the decay width of
the A particle entering its propagator as well as to the quark masses.

Another phenomenon which helps reducing drastically Ωχ̃h
2 and, thus,

satisfying the CDM constraint is strong χ̃ − τ̃2 coannihilation [21, 32, 33]
which operates when mτ̃2 gets close to mχ̃. This yields [32, 33] a relatively
narrow allowed region in the m0−M1/2 plane (for fixed A0 and tanβ), which
stretches just above the excluded region where the LSP is the τ̃2.

There exists [42] also a “bulk” region at m0 ∼M1/2 ∼ few×100 GeV which
is allowed by CDM considerations. The (co)annihilation is enhanced in this re-
gion due to the low values of the various sparticle masses. However, this region
is, generally, excluded by other phenomenological constraints (see Sect. 1.7.4).
So, the A-pole annihilation of neutralinos and the χ̃ − τ̃2 coannihilation are
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the two basic available mechanisms for obtaining acceptable values for the
neutralino relic abundance in the CMSSM.

There are publicly available codes such as the micrOMEGAs [44] or the
DarkSUSY [20] for the calculation of Ωχ̃h

2 in MSSM which, among other im-
provements, include all the relevant (co)annihilation channels between all the
sparticles (neutralinos, charginos, squarks, sleptons, gluinos), use exact tree-
level cross sections, calculate accurately and relativistically the thermal aver-
ages, treat poles and final-state thresholds properly, integrate the Boltzmann
equation numerically, and include the one-loop QCD corrections to the de-
cay widths of the Higgs particles and the fermion masses. These codes apply
to any composition of the neutralino and also include other phenomenolog-
ical constraints such as the accelerator bounds on certain (s)particle masses
and the bounds on the anomalous magnetic moment of the muon and the
branching ration of the process b→ sγ (see Sect. 1.7.4).

1.5 Axinos

Another SUSY particle that could account for the CDM in the universe is
[46] (see also [47]) the axino ã. This particle, which is the superpartner of the
axion field, is a neutral Majorana chiral fermion with negative R-parity. Its
mass mã is [48] strongly model-dependent and can be anywhere in the range
1 eV −MSUSY. In the limit of unbroken SUSY, the axino mass is obviously
equal to the axion mass, which is tiny. Soft SUSY breaking, however, generates
suppressed corrections to mã via non-renormalizable operators of dimension
five or higher. So, the corrected mass is at most of order M2

SUSY/fa ∼ 1 keV
(note that no dimension-four soft mass term is allowed for the axino since
this particle is a chiral fermion). In specific SUSY models, there also exist
one-loop contributions to mã, which are typically <∼ MSUSY. When the axion
is a linear combination of the phases of more than one superfields, we can even
have tree-level contributions to the axino mass which can easily be as large as
MSUSY. In conclusion, mã is basically a free parameter ranging between 1 eV
and MSUSY. This means that the axino can easily be the LSP in SUSY models.

The axino couplings are suppressed by fa with the most important of them
being the dimension-five axino (ã)–gaugino (λ̃)–gauge boson (A) Lagrangian
coupling:

Lãλ̃A = i
3αY CaY Y

8πfa
¯̃aγ5[γμ, γν ]B̃Bμν + i

3αs
8πfa

¯̃aγ5[γμ, γν]g̃bF b
μν , (1.26)

where B and B̃ are, respectively, the gauge boson and gaugino corresponding
to U(1)Y , F b and g̃b the gluon and gluino fields, αY and αs the U(1)Y and
strong fine-structure constants, and CaY Y a model-dependent coefficient of
order unity.

Inflation dilutes utterly any pre-existing axinos, which, after reheating,
are not in thermal equilibrium with the thermal bath because of their very
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weak couplings (suppressed by fa). They can, however, be thermally produced
from the bath by 2-body scattering processes or the decay of (s)particles. The
so-produced axinos are initially relativistic, but out of thermal equilibrium.
This thermal production (TP) of axinos is [46] predominantly due to 2-body
scattering processes of strongly interacting particles (because of the relative
strength of strong interactions) involving the ãg̃F coupling in (1.26). Such
processes are

g + g → ã + g̃ , g + g̃ → ã + g , g + q̃ → ã + q , g + q → ã + q̃ ,

q̃ + q → ã + g , g̃ + g̃ → ã + g̃ , g̃ + q → ã + q , g̃ + q̃ → ã + q̃ ,

q + q̄ → ã + g̃ , q̃ + q̃ → ã + g̃ , (1.27)

where gluons and quarks are denoted by g and q respectively. There exists [46]
also TP of axinos from the decay of thermal gluinos (g̃ → ã + g) or thermal
neutralinos (χ̃→ ã+γ [or Z]). The latter proceeds through the dimension-five
Lagrangian coupling ãB̃B in (1.26) provided that the neutralino possesses an
appreciable bino component. These two decay processes are important only
for reheat temperatures Tr of the order of the gluino mass mg̃ or the neutralino
mass mχ̃ respectively.

There is also non-thermal production (NTP) of axinos resulting from the
decays of sparticles which are out of thermal equilibrium. Indeed, due to
the suppressed couplings of the axino, the sparticles first decay to the light-
est ordinary sparticle (LOSP), i.e. the lightest sparticle with non-trivial SM
quantum numbers, which is the NLSP in this case. The LOSPs then freeze
out of thermal equilibrium and eventually decay into axinos.

If the LOSP happens to be the lightest neutralino, the relevant decay pro-
cess is [46] χ̃→ ã+γ [or Z] through the coupling ãB̃B in (1.26) provided that
χ̃ has a B̃ component. If, alternatively, the LOSP is the lightest stau mass
eigenstate, the decay process for the NTP of axinos is [49] τ̃2 → τ + ã via the
one-loop Feynman diagrams in Fig. 1.1, which contain the effective vertex χ̃ãγ
[or χ̃ãZ] from the coupling ãB̃B in (1.26). In the decay of χ̃, γ’s and qq̄ pairs
are produced. The latter originate from virtual γ and Z, or real Z exchange
and lead to hadronic showers. In the τ̃2 case, the resulting τ decays immedi-
ately into light mesons yielding again hadronic showers. The electromagnetic
and hadronic showers emerging from the LOSP decay in both cases, if they
are generated after big bang nucleosynthesis (BBN), can cause destruction
and/or overproduction of some of the light elements, thereby jeopardizing the
successful predictions of BBN. This implies some constraints on the param-
eters of the model which, in the present case where the axino is the LSP,
come basically from the hadronic showers alone due to the relatively short
LOSP lifetime. In the case of a neutralino LOSP, we obtain [46] the bound
mã

>∼ 360 MeV for low values of the neutralino mass mχ̃ (<∼ 60 GeV), but no
bound on the axino mass is obtained for higher values of mχ̃ (>∼ 150 GeV).

We must further impose the following constraints: (a) the predicted axino
abundance Ωãh

2 should lie in the 95% c.l. range for the CDM abundance
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τ̃2

τ

χ̃

γ [Z]

τ

ã

τ̃2

τ̃

γ [Z]

χ̃

τ

ã

Fig. 1.1. The one-loop diagrams for the decay τ̃2 → τ + ã

in the universe derived by the WMAP satellite [1], (b) both the TP and
NTP axinos must become non-relativistic before matter domination so as to
contribute to CDM, and (c) the NTP axinos should not contribute too much
relativistic energy density during BBN since this can destroy its successful
predictions. For both χ̃ or τ̃2 LOSP, the requirements (b) and (c) imply that
mã

>∼ 100 keV or, equivalently, Tr
<∼ 5×106 GeV. For large values of the reheat

temperature (Tr
>∼ 104 GeV), TP of axinos is more efficient than NTP and the

cosmologically favored region in parameter space where the requirement (a)
holds is quite narrow. For smaller Tr’s, NTP dominates yielding a much wider
favored region with mã

>∼ 10 MeV. The upper bound on mã increases as Tr

decreases towards mχ̃. For mq̃ � mg̃, TP of axinos via the process q̃ → q + ã
becomes [50] very efficient leading to a reduction of the upper limit on Tr. As
a result, the cosmologically favored region from NTP is reduced in this case.
The Feynman diagrams for the process q̃ → q + ã are depicted in Fig. 1.2.
The restrictions on the mã − Tr plane from axino CDM considerations are
presented in Fig. 1.3.

We find [49] that, for the CMSSM, with appropriate choices of mã and
Tr, almost any pair of values for m0 and M1/2 can be allowed. This holds for
both χ̃ or τ̃2 as LOSP. However, the required Tr’s for achieving the WMAP
bound on CDM turn out to be quite low (<∼ few × 100 GeV).

q̃

q

g̃

g

q

ã

q̃

q̃

g

g̃

q

ã

Fig. 1.2. The one-loop diagrams for the decay q̃ → q + ã



1 Particle Physics Approach to Dark Matter 17

107

106

105

104

103

102

101

100
10–4 10–2 100 102

T
r

mã (GeV)

Excluded
mq̃ � mg̃

Excluded

ΩTP
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Fig. 1.3. The restrictions on the mã − Tr plane from axino CDM considerations
for χ̃ = B̃, mχ̃ = 100 GeV, mg̃ = mq̃ = 1 TeV, and fa = 1011 GeV. The solid
almost diagonal line corresponds to ΩTP

a h2 ≈ 0.13, where ΩTP
a h2 is the TP axino

abundance. So, the area above this line is cosmologically excluded. The narrow
shaded area just below the thin part of this line for mã

<∼ 10 MeV is cosmologically
favored by TP. The hatched areas are favored by NTP. For mq̃ � mg̃, the solid line
is replaced by the dashed one, whose position is strongly dependent on the actual
values of mq̃, mg̃ and is only indicative here. The area favored by NTP is then
limited only to the “back-hatched” region which lies below the dashed line

1.6 Gravitinos

It has been proposed [51, 52] that CDM could also consist of gravitinos. The
gravitino G̃ is the superpartner of the graviton and has negative R-parity. It
can be the LSP in many cases and, thus, contribute to CDM. In the very
CMSSM, its mass mG̃ is fixed by the asymptotic condition m3/2 = m0. In the
general CMSSM, however, it is a free parameter ranging between 100 GeV
and 1 TeV. It can, thus, very easily be the LSP in this case.

The couplings of the gravitino are suppressed by the Planck scale. The
most important of them are given by the dimension-five Lagrangian terms

L = − 1√
2mP

Dνφi∗ ¯̃
ψμγ

νγμψi − 1√
2mP

Dνφiψ̄iγμγνψ̃μ

− i

8mP

¯̃ψμ[γ
ν , γρ]γμλ̃aF a

νρ , (1.28)

where ψ̃μ denotes the gravitino field, φi are the complex scalar fields, ψi

are the corresponding chiral fermion fields, λ̃a are the gaugino fields, mP �
2.44 × 1018 GeV is the reduced Planck scale, and Dν denotes the covariant
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derivative. From these Lagrangian terms, we obtain scalar–fermion–gravitino
vertices (φfG̃) such as qq̃G̃, ll̃G̃, and HH̃G̃, as well as gaugino–gauge boson–
gravitino vertices (λ̃F G̃) such as gg̃G̃ and BB̃G̃ (in this section, l and H
represent any lepton and Higgs boson respectively).

The gravitinos are thermally produced after reheating by 2→ 2 scattering
processes involving the above vertices. Such processes are [51, 52]

g + g → G̃ + g̃ , g + g̃ → G̃ + g , g + q̃ → G̃ + q , g + q → G̃ + q̃ ,

q + q̃ → G̃ + g , g̃ + g̃ → G̃ + g̃ , g̃ + q → G̃ + q , g̃ + q̃ → G̃ + q̃ ,

q + q̄ → G̃ + g̃ , q̃ + q̃ → G̃ + g̃ . (1.29)

There is [52, 53] also NTP of gravitinos via the decay of the NLSP. For
neutralino NLSP, the relevant decay processes are χ̃→ G̃ + γ [or Z] from the
λ̃F G̃ coupling and χ̃ → G̃ + H from the HH̃G̃ coupling. In the case of τ̃2
NLSP, the relevant decay process is τ̃2 → τ+G̃ from the vertex ll̃G̃. There is an
important difference between the NTP of gravitinos and axinos. In the former
case, the NLSP has a large lifetime (up to about 108 sec). Consequently, it
gives rise mostly to electromagnetic, but also to hadronic showers well after
BBN. The electromagnetic showers cause destruction of some light elements
(D, 4He, 7Li) and/or overproduction of 3He and 6Li, thereby disturbing BBN.
The hadronic showers can also disturb BBN. The overall resulting constraint
is [54] very strong allowing only limited regions of the parameter space of the
CMSSM lying exclusively in the range where the NLSP is the τ̃2. Moreover,
in these allowed regions, the NTP of gravitinos is not efficient enough to
account for the observed CDM abundance for M1/2

<∼ 6 TeV. However, we
can compensate for the inefficiency of NTP by raising Tr to enhance the TP
of G̃’s. The relic gravitino abundance from TP, for mG̃ � mg̃, is [55]

ΩTP
G̃

h2 ≈ 0.2
(

Tr

1010 GeV

)(
100 GeV

mG̃

)(
mg̃(μ)
1 TeV

)
, (1.30)

where mg̃(μ) is the running gluino mass (for the general formula, see [56]).

1.7 Yukawa Quasi-Unification

As already said in Sect. 1.3, exact YU in the framework of the CMSSM leads to
wrong values for mb and, thus, must be corrected. We will now present a model
which naturally solves [39] (see also [57, 58]) this mb problem and discuss the
restrictions on its parameter space implied by CDM considerations and other
phenomenological constraints. Exact YU can be achieved by embedding the
MSSM in a SUSY GUT model with a gauge group containing SU(4)c and
SU(2)R. Indeed, assuming that the electroweak Higgs superfields H1, H2 and
the third family right handed quark superfields tc, bc form SU(2)R doublets,
we obtain [59] the asymptotic Yukawa coupling relation ht = hb and, hence,
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large tanβ ∼ mt/mb. Moreover, if the third generation quark and lepton
SU(2)L doublets [singlets] q3 and l3 [bc and τc] form a SU(4)c 4-plet [4̄-plet]
and the Higgs doublet H1 which couples to them is a SU(4)c singlet, we get
hb = hτ and the asymptotic relation mb = mτ follows. The simplest GUT
gauge group which contains both SU(4)c and SU(2)R is the Pati-Salam (PS)
group GPS = SU(4)c × SU(2)L × SU(2)R and we will use it here.

As mentioned, applying YU in the context of the CMSSM and given the
experimental values of the top-quark and tau-lepton masses (which naturally
restrict tanβ ∼ 50), the resulting value of the b-quark mass turns out to be
unacceptable. This is due to the fact that, in the large tanβ regime, the tree-
level b-quark mass receives sizeable SUSY corrections [24, 60, 61, 62] (about
20%), which have the sign of μ (with the standard sign convention [63]) and
drive, for μ > [<] 0, the corrected b-quark mass at MZ , mb(MZ), well above
[somewhat below] its 95% c.l. experimental range

2.684 GeV <∼ mb(MZ) <∼ 3.092 GeV with αs(MZ) = 0.1185 . (1.31)

This is derived by appropriately [39] evolving the corresponding range of
mb(mb) in the MS scheme (i.e. 3.95 − 4.55 GeV) up to MZ in accordance
with [64]. We see that, for both signs of μ, YU leads to an unacceptable
b-quark mass with the μ < 0 case being less disfavored.

A way out of this mb problem can be found [39] (see also [57, 58])
without having to abandon the CMSSM (in contrast to the usual strategy
[62, 65, 66, 67]) or YU altogether. We can rather modestly correct YU by
including an extra SU(4)c non-singlet Higgs superfield with Yukawa couplings
to the quarks and leptons. The Higgs SU(2)L doublets contained in this super-
field can naturally develop [68] subdominant VEVs and mix with the main
electroweak doublets, which are assumed to be SU(4)c singlets and form a
SU(2)R doublet. This mixing can, in general, violate the SU(2)R symmetry.
Consequently, the resulting electroweak Higgs doublets H1, H2 do not form a
SU(2)R doublet and also break the SU(4)c symmetry. The required deviation
from YU is expected to be more pronounced for μ > 0. Despite this, we will
study here this case, since the μ < 0 case has been excluded [69] by combining
the WMAP restrictions [1] on the CDM in the universe with the experimen-
tal results [70] on the inclusive branching ratio BR(b→ sγ). The same SUSY
GUT model which, for μ > 0 and universal boundary conditions, remedies
the mb problem leads to a new version [71] of shifted hybrid inflation [72],
which, as the older version [72], avoids monopole overproduction at the end
of inflation, but, in contrast to that version, is based only on renormalizable
interactions.

In Sect. 1.7.1, we review the construction of a SUSY GUT model which
naturally and modestly violates YU, yielding an appropriate Yukawa quasi-
unification condition (YQUC), which is derived in Sect. 1.7.2. We then outline
the resulting CMSSM in Sect. 1.7.3 and introduce the various cosmologi-
cal and phenomenological requirements which restrict its parameter space
in Sect. 1.7.4. In Sect. 1.7.5, we delineate the allowed range of parameters.
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Finally, in Sect. 1.7.6, we briefly comment on the new version of shifted hybrid
inflation which is realized in this model.

1.7.1 The PS SUSY GUT Model

We will take the SUSY GUT model of shifted hybrid inflation [72] (see also
[73]) as our starting point. It is based on GPS, which is the simplest GUT
gauge group that can lead to exact YU. The representations under GPS and
the global charges of the various matter and Higgs superfields contained in
this model are presented in Table 1.2, which also contains the extra Higgs su-
perfields required for accommodating an adequate violation of YU for μ > 0
(see below). The matter superfields are Fi and F c

i (i = 1, 2, 3), while the elec-
troweak Higgs doublets belong to the superfield h. So, all the requirements
for exact YU are fulfilled. The spontaneous breaking of GPS down to GSM is
achieved by the superheavy VEVs (∼ MGUT) of the right handed neutrino-
type components of a conjugate pair of Higgs superfields Hc, H̄c. The model
also contains a gauge singlet S which triggers the breaking of GPS, a SU(4)c
6-plet G which gives [74] masses to the right handed down-quark-type com-
ponents of Hc, H̄c, and a pair of gauge singlets N , N̄ for solving [75] the μ
problem of the MSSM via a PQ symmetry (for an alternative solution of the
μ problem, see [10]). In addition to GPS, the model possesses two global U(1)
symmetries, namely a R and a PQ symmetry, as well as the discrete matter
parity symmetry Zmp

2 . Note that global continuous symmetries such as our
PQ and R symmetry can effectively arise [77] from the rich discrete symme-
try groups encountered in many compactified string theories (see e.g. [78]).
Note that, although the model contains baryon- and lepton-number-violating
superpotential terms, the proton is [39, 72] practically stable. The baryon
asymmetry of the universe is generated via the non-thermal realization [79] of
the leptogenesis scenario [80] (for recent papers on non-thermal leptogenesis,
see e.g. [81]).

A moderate violation of exact YU can be naturally accommodated in this
model by adding a new Higgs superfield h′ with Yukawa couplings FF ch′.
Actually, (15,2,2) is the only representation of GPS, besides (1,2,2), which
possesses such couplings to the matter superfields. In order to give superheavy
masses to the color non-singlet components of h′, we need to include one more
Higgs superfield h̄′ with the superpotential coupling h̄′h′, whose coefficient is
of the order of MGUT.

After the breaking of GPS to GSM, the two color singlet SU(2)L doublets
h′

1, h′
2 contained in h′ can mix with the corresponding doublets h1, h2 in h.

This is mainly due to the terms h̄′h′ and HcH̄ch̄′h. Actually, since

HcH̄c = (4̄,1,2)(4,1,2) = (15,1,1 + 3) + · · · ,
h̄′h = (15,2,2)(1,2,2) = (15,1,1 + 3) + · · · , (1.32)

there are two independent couplings of the type HcH̄ch̄′h (both suppressed
by the string scale MS ≈ 5 × 1017 GeV, as they are non-renormalizable).
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Table 1.2. Superfield content of the model

Superfields Representations Global

under GPS Charges

R PQ Zmp
2

Matter Superfields

Fi (4, 2,1) 1/2 −1 1

F c
i (4̄,1,2) 1/2 0 −1

Higgs Superfields

h (1, 2,2) 0 1 0

Hc (4̄,1,2) 0 0 0

H̄c (4, 1,2) 0 0 0

S (1, 1,1) 1 0 0

G (6, 1,1) 1 0 0

N (1, 1,1) 1/2 −1 0

N̄ (1, 1,1) 0 1 0

Extra Higgs Superfields

h′ (15, 2,2) 0 1 0

h̄′ (15, 2,2) 1 −1 0

φ (15, 1,3) 0 0 0

φ̄ (15, 1,3) 1 0 0

One of these couplings is between the SU(2)R singlets in HcH̄c and h̄′h and
the other between the SU(2)R triplets in these combinations. So, we obtain
two bilinear terms h̄′

1h1 and h̄′
2h2 with different coefficients, which are sup-

pressed by MGUT/MS. These terms together with the terms h̄′
1h

′
1 and h̄′

2h
′
2

from h̄′h′, which have equal coefficients, generate different mixings between
h1, h′

1 and h2, h′
2. Consequently, the resulting electroweak doublets H1, H2

contain SU(4)c violating components suppressed by MGUT/MS and fail to
form a SU(2)R doublet by an equally suppressed amount. So, YU is naturally
and moderately violated. Unfortunately, as it turns out, this violation is not
adequately large for correcting the bottom-quark mass within the framework
of the CMSSM with μ > 0.

In order to allow for a more sizable violation of YU, we further extend the
model by including the superfield φ with the coupling φh̄′h. To give super-
heavy masses to the color non-singlets in φ, we introduce one more superfield
φ̄ with the coupling φ̄φ, whose coefficient is of order MGUT.

The superpotential terms φ̄φ and φ̄HcH̄c imply that, after the breaking
of GPS to GSM, φ acquires a VEV of order MGUT. The coupling φh̄′h then
generates SU(2)R violating unsuppressed bilinear terms between the doublets
in h̄′ and h. These terms can overshadow the corresponding ones from the
non-renormalizable term HcH̄ch̄′h. The resulting SU(2)R violating mixing of
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the doublets in h and h′ is then unsuppressed and we can obtain stronger
violation of YU.

1.7.2 The YQUC

To further analyze the mixing of the doublets in h and h′, observe that the
part of the superpotential corresponding to the symbolic couplings h̄′h′, φh̄′h
is properly written as

mtr
(
h̄′εh′Tε

)
+ ptr

(
h̄′εφhTε

)
, (1.33)

where m is a mass parameter of order MGUT, p is a dimensionless parameter
of order unity, tr denotes trace taken with respect to the SU(4)c and SU(2)L
indices, and the superscript T denotes the transpose of a matrix.

After the breaking of GPS to GSM, φ acquires a VEV 〈φ〉 ∼ MGUT. Sub-
stituting it by this VEV in the above couplings, we obtain

tr(h̄′εh′Tε) = h̄′T
1 εh′

2 + h′T
1 εh̄′

2 + · · · , (1.34)

tr(h̄′εφhTε) =
〈φ〉√

2
tr(h̄′εσ3h

Tε) =
〈φ〉√

2
(h̄′T

1 εh2 − hT
1 εh̄′

2) , (1.35)

where the ellipsis in (1.34) contains the colored components of h̄′, h′ and
σ3 = diag(1,−1). Inserting (1.34) and (1.35) into (1.33), we obtain

mh̄′T
1 ε(h′

2 − αh2) + m(h′T
1 + αhT

1 )εh̄′
2 with α = − p〈φ〉√

2m
. (1.36)

So, we get two pairs of superheavy doublets with mass m. They are predom-
inantly given by

h̄′
1,

h′
2 − αh2√
1 + |α|2

and
h′

1 + αh1√
1 + |α|2

, h̄′
2 . (1.37)

The orthogonal combinations of h1, h′
1 and h2, h′

2 constitute the electroweak
doublets

H1 =
h1 − α∗h′

1√
1 + |α|2

and H2 =
h2 + α∗h′

2√
1 + |α|2

. (1.38)

The superheavy doublets in (1.37) must have vanishing VEVs, which readily
implies that 〈h′

1〉 = −α〈h1〉 and 〈h′
2〉 = α〈h2〉. Equation (1.38) then gives

〈H1〉 = (1 + |α|2)1/2〈h1〉, 〈H2〉 = (1 + |α|2)1/2〈h2〉. From the third generation
Yukawa couplings y33F3hF

c
3 , 2y′33F3h

′F c
3 , we obtain

mt = |y33〈h2〉+ y′33〈h′
2〉| =

∣∣∣∣∣
1 + ρα/

√
3√

1 + |α|2
y33〈H2〉

∣∣∣∣∣ , (1.39)

mb =

∣∣∣∣∣
1− ρα/

√
3√

1 + |α|2
y33〈H1〉

∣∣∣∣∣ , mτ =

∣∣∣∣∣
1 +
√

3ρα√
1 + |α|2

y33〈H1〉
∣∣∣∣∣ , (1.40)



1 Particle Physics Approach to Dark Matter 23

where ρ = y′33/y33. From (1.39) and (1.40), we see that YU is now replaced
by the YQUC

ht : hb : hτ = (1 + c) : (1− c) : (1 + 3c) with 0 < c = ρα/
√

3 < 1 . (1.41)

For simplicity, we restricted ourselves here to real values of c only which
lie between zero and unity, although c is, in general, an arbitrary complex
quantity with |c| ∼ 1.

1.7.3 The Resulting CMSSM

Below the GUT scale MGUT, the particle content of our model reduces to this
of MSSM (modulo SM singlets). We assume universal soft SUSY breaking
scalar masses m0, gaugino masses M1/2, and trilinear scalar couplings A0 at
MGUT. Therefore, the resulting MSSM is the so-called CMSSM [18] with μ > 0
supplemented by the YQUC in (1.41). With these initial conditions, we run
the MSSM RGEs [21] between MGUT and a common variable SUSY threshold
MSUSY (see Sect. 1.3) determined in consistency with the SUSY spectrum of
the model. At MSUSY, we impose radiative electroweak symmetry breaking,
evaluate the SUSY spectrum and incorporate the SUSY corrections [24, 61, 62]
to the b-quark and τ -lepton masses. Note that the corrections to the τ -lepton
mass (almost 4%) lead [69] to a small reduction of tanβ. From MSUSY to MZ ,
the running of gauge and Yukawa coupling constants is continued using the
SM RGEs.

For presentation purposes, M1/2 and m0 can be replaced [21] by the LSP
mass mLSP and the relative mass splitting between this particle and the light-
est stau Δτ̃2 = (mτ̃2 −mLSP)/mLSP (recall that τ̃2 is the NLSP in this case).
For simplicity, we restrict this presentation to the A0 = 0 case (for A0 
= 0
see [39, 82]). So, our input parameters are mLSP, Δτ̃2 , c, and tanβ.

For any given mb(MZ) in the range in (1.31) and with fixed mt(mt) =
166 GeV and mτ (MZ) = 1.746 GeV, we can determine the parameters c and
tanβ at MSUSY so that the YQUC in (1.41) is satisfied. We are, thus, left
with mLSP and Δτ̃2 as free parameters.

1.7.4 Cosmological and Phenomenological Constraints

Restrictions on the parameters of our model can be derived by imposing a
number of cosmological and phenomenological requirements (for similar recent
analyses, see [66, 67, 83]). These constraints result from
• CDM Considerations. As discussed in Sect. 1.3, in the context of the

CMSSM, the LSP can be the lightest neutralino which is an almost pure bino.
It naturally arises [84] as a CDM candidate. We require its relic abundance,
ΩLSPh

2, not to exceed the 95% c.l. upper bound on the CDM abundance
derived [1] by WMAP:

ΩCDMh2 <∼ 0.13 . (1.42)
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We calculate ΩLSPh
2 using micrOMEGAs [44], which is certainly one of the

most complete publicly available codes. Among other things, it includes all
possible coannihilation processes [33] and one-loop QCD corrections [43] to
the Higgs decay widths and couplings to fermions.
• Branching Ratio of b → sγ. Taking into account the experimental re-

sults of [70] on this ratio, BR(b→ sγ), and combining [39] appropriately the
experimental and theoretical errors involved, we obtain the 95% c.l. range

1.9× 10−4 <∼ BR(b→ sγ) <∼ 4.6× 10−4 . (1.43)

Although there exist more recent experimental data [85] on the branching
ratio of b → sγ, we do not use them here. The reason is that these data
do not separate the theoretical errors from the experimental ones and, thus,
the derivation of the 95% c.l. range is quite ambiguous. In any case, the 95%
c.l. limits obtained in [86] on the basis of these latest measurements are not
terribly different from the ones quoted in (1.43). In view of this and the fact
that, in our case, the restrictions from BR(b→ sγ) are overshadowed by other
constraints (see Sect. 1.7.5), we limit ourselves to the older data. We compute
BR(b→ sγ) by using an updated version of the relevant calculation contained
in the micrOMEGAs package [44]. In this code, the SM contribution is calculated
following [87]. The charged Higgs (H±) contribution is evaluated by including
the next-to-leading order (NLO) QCD corrections [88] and tanβ enhanced
contributions [88]. The dominant SUSY contribution includes resummed NLO
SUSY QCD corrections [88], which hold for large tanβ.
• Muon Anomalous Magnetic Moment. The deviation, δaμ, of the mea-

sured value of aμ from its predicted value in the SM, aSM
μ , can be attributed

to SUSY contributions, which are calculated by using the micrOMEGAs routine
[89]. The calculation of aSM

μ is not yet stabilized mainly because of the insta-
bility of the hadronic vacuum polarization contribution. According to recent
calculations (see e.g. [90, 91]), there is still a considerable discrepancy between
the findings based on the e+e− annihilation data and the ones based on the
τ -decay data. Taking into account the results of [90] and the experimental
measurement of aμ reported in [92], we get the following 95% c.l. ranges:

− 0.53× 10−10 <∼ δaμ <∼ 44.7× 10−10, e+e−-based ; (1.44)

−13.6× 10−10 <∼ δaμ <∼ 28.4× 10−10, τ -based . (1.45)

Following the common practice [83], we adopt the restrictions to parameters
induced by (1.44), since (1.45) is considered as quite oracular, due to poor
τ -decay data. It is true that there exist more recent experimental data [93]
on aμ than the ones we considered and more updated estimates of δaμ than
the one in [90] (see e.g. [91]). However, only the 95% c.l. upper limit on δaμ
enters into our analysis here and its new values are not very different from
the one in (1.44).
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• Collider Bounds. Here, as it turns out, the only relevant collider bound
is the 95% c.l. LEP lower bound [94] on the mass of the lightest CP -even
neutral Higgs boson h:

mh
>∼ 114.4 GeV . (1.46)

The SUSY corrections to the lightest CP -even Higgs boson mass mh are
calculated at two loops by using the FeynHiggsFast program [95] included in
the micrOMEGAs code [44].

1.7.5 The Allowed Parameter Space

We will now try to delineate the parameter space of our model with μ > 0
which is consistent with the constraints in Sect. 1.7.4. The restrictions on the
mLSP−Δτ̃2 plane, for A0 = 0 and the central values of αs(MZ) = 0.1185 and
mb(MZ) = 2.888 GeV, are indicated in Fig. 1.4 by solid lines, while the upper
bound on mLSP from (1.42), for mb(MZ) = 2.684 [3.092] GeV, is depicted by
a dashed [dotted] line. We observe the following:

– The lower bounds on mLSP are not so sensitive to the variations of
mb(MZ).

– The lower bound on mLSP from (1.46) overshadows all the other lower
bounds on this mass.

τΔ

Fig. 1.4. The various restrictions on the mLSP − Δτ̃2 plane for μ > 0, A0 = 0,
and αs(MZ) = 0.1185. From left to right, the solid lines depict the lower bounds on
mLSP from δaμ < 44.7 × 10−10, BR(b → sγ) > 1.9 × 10−4, and mh > 114.4 GeV
and the upper bound on mLSP from ΩLSPh2 < 0.13 for mb(MZ) = 2.888 GeV.
The dashed [dotted ] line depicts the upper bound on mLSP from ΩLSPh2 < 0.13 for
mb(MZ) = 2.684 [3.092] GeV. The allowed area for mb(MZ) = 2.888 GeV is shaded
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– The upper bound on mLSP from (1.42) is very sensitive to the variations
of mb(MZ). In particular, one notices the extreme sensitivity of the almost
vertical part of the corresponding line, where the LSP annihilation via an
A-boson exchange in the s-channel is [96] by far the dominant process,
since mA, which is smaller than 2mLSP, is always very close to it as seen
from Fig. 1.5. This sensitivity can be understood from Fig. 1.6, where mA

is depicted versus mLSP for various mb(MZ)’s. We see that, as mb(MZ)
decreases, mA increases and approaches 2mLSP. The A-pole annihilation
is then enhanced and ΩLSPh2 is drastically reduced causing an increase of
the upper bound on mLSP.

– For low Δτ̃2 ’s, bino-stau coannihilations [33] take over leading to a very
pronounced reduction of the LSP relic abundance ΩLSPh

2, thereby en-
hancing the upper limit on mLSP. So, we obtain the almost horizontal tail
of the allowed region in Fig. 1.4.

For μ > 0, A0 = 0, αs(MZ) = 0.1185 and mb(MZ) = 2.888 GeV, we find
the following allowed ranges of parameters:

176 GeV <∼ mLSP
<∼ 615 GeV, 0 <∼ Δτ̃2

<∼ 1.8 ,

58 <∼ tanβ <∼ 59, 0.14 <∼ c <∼ 0.17 . (1.47)

The splitting between the bottom (or tau) and top Yukawa coupling constants
δh ≡ −(hb−ht)/ht = (hτ −ht)/ht = 2c/(1+ c) ranges between 0.25 and 0.29.

Fig. 1.5. The mass parameters mA and MSUSY versus mLSP for various values
of Δτ̃2 , which are indicated on the curves. We take μ > 0, A0 = 0, mb(MZ) =
2.888 GeV, and αs(MZ) = 0.1185
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Fig. 1.6. The mass parameters mA and MSUSY as functions of mLSP for μ > 0,
A0 = 0, Δτ̃2 = 1, αs(MZ) = 0.1185, and with mb(MZ) = 2.684 GeV (dashed lines),
3.092 GeV (dotted lines), or 2.888 GeV (solid lines)

1.7.6 The New Shifted Hybrid Inflation

It is interesting to note that our SUSY GUT model gives rise [71] naturally to
a modified version of shifted hybrid inflation [72]. Hybrid inflation [97], which
is certainly one of the most promising inflationary scenarios, uses two real
scalars: one which provides the vacuum energy density for driving inflation
and a second which is the slowly varying field during inflation. This scheme,
which is naturally incorporated [98] in SUSY GUTs (for an updated review,
see [99]), in its standard realization has the following property [100]: if the
GUT gauge symmetry breaking predicts topological defects such as magnetic
monopoles [101], cosmic strings [102], or domain walls [103], these defects
are copiously produced at the end of inflation. In the case of monopoles or
walls, this leads to a cosmological catastrophe [104]. The breaking of the GPS

symmetry predicts the existence of doubly charged monopoles [105]. So, any
PS SUSY GUT model incorporating the standard realization of SUSY hybrid
inflation would be unacceptable. One way to remedy this is to invoke [106]
thermal inflation [107] to dilute the primordial monopoles well after their
production. Alternatively, we can construct variants of the standard SUSY
hybrid inflationary scenario such as smooth [100] or shifted [72] hybrid infla-
tion which do not suffer from the monopole overproduction problem. In the
latter scenario, we generate [72] a shifted inflationary trajectory so that GPS

is already broken during inflation. This could be achieved [72] in our SUSY
GUT model even before the introduction of the extra Higgs superfields, but
only by utilizing non-renormalizable terms. The inclusion of h′ and h̄′ does not
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change this situation. The inclusion of φ and φ̄, however, very naturally gives
rise [71] to a shifted path, but now with renormalizable interactions alone.

1.8 Conclusions

We showed that particle physics provides us with a number of candidate par-
ticles out of which the CDM of the universe can be made. These particles
are not invented solely for explaining the CDM, but they are naturally there
in various particle physics models. We discussed in some detail the major
candidates which are the axion, the lightest neutralino, the axino, and the
gravitino. The last three particles exist only in SUSY theories and can be
stable provided that they are the LSP.

The axion is a pseudo Nambu-Goldstone boson associated with the sponta-
neous breaking of a PQ symmetry. This is a global anomalous U(1) symmetry
invoked to solve the strong CP problem. It is, actually, the most natural so-
lution to this problem which is available at present. The axions are extremely
light particles and are generated at the QCD phase transition carrying zero
momentum. We argued that these particles can easily provide the CDM in
the universe. However, if the PQ field emerges with non-zero value at the end
of inflation, they lead to isocurvature perturbations, which, for superheavy
inflationary scales, are too strong to be compatible with the recent results of
the WMAP satellite on the CMBR anisotropies.

The most popular CDM candidate is, certainly, the lightest neutralino
which is present in all SUSY models and can be the LSP for a wide range of
parameters. We considered it within the simplest SUSY framework which is
the MSSM whose salient properties were summarized. We used exclusively the
constrained version of MSSM which is known as CMSSM and is based on uni-
versal boundary conditions. In this case, the lightest neutralino is an almost
pure bino, whereas the NLSP is the lightest stau. We sketched the calculation
of the neutralino relic abundance in the universe paying particular attention
not only to the neutralino pair annihilations, but to the neutralino-stau coan-
nihilations too. It is very important for the accuracy of the calculation to
treat poles and final-state thresholds properly and include the one-loop QCD
corrections to the Higgs boson decay widths and the fermion masses. We find
that two effects help us reduce the neutralino relic abundance and satisfy the
WMAP constraint on CDM: the resonantly enhanced neutralino pair anni-
hilation via an A-pole exchange in the s-channel, which appears in the large
tanβ regime, and the strong neutralino-stau coannihilation, which is achieved
when these particles are almost degenerate in mass.

The axino, which is the SUSY partner of the axion, can also be the LSP
in many cases since its mass is a strongly model-dependent parameter in the
CMSSM. It is produced thermally by 2-body scattering or decay processes
in the thermal bath, or non-thermally by the decay of sparticles which are
already frozen out of thermal equilibrium. For small axino masses, TP is more
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important yielding a very narrow favored region in the parameter space. For
larger axino masses, however, NTP is more efficient and the favored region
in the parameter space becomes considerably wider. One finds that, in the
case of the CMSSM, almost any point on the m0−M1/2 plane can be allowed
by axino CDM considerations. The required reheat temperatures though are
quite small (<∼ few × 100 GeV).

The mass of the gravitino is a practically free parameter in the CMSSM.
So, the gravitino can easily be the LSP and, in principle, contribute to the
CDM of the universe. It is produced thermally by 2-body scattering processes
in the thermal bath as well as non-thermally by the decay of the NLSP, which
can be either the neutralino or the stau. In contrast to the axino case, however,
the NLSP can now have quite a long lifetime. The electromagnetic showers
resulting from the NLSP decay can destroy the successful predictions of BBN.
So, we obtain strong constraints which allow only very limited regions of the
parameter space of the CMSSM. As it turns out, NTP in these regions is not
efficient enough to account for CDM. We can, however, make these regions
cosmologically favored by raising Tr to enhance TP of gravitinos.

We studied the CMSSM with μ > 0 and A0 = 0 applying a YQUC which
originates from a PS SUSY GUT model. This condition yields an adequate
deviation from YU which allows an acceptable mb(MZ). We, also, imposed
the constraints from the CDM in the universe, b→ sγ, δαμ and mh. We found
that there exists a wide and natural range of CMSSM parameters which is
consistent with all the above constraints. The parameter tanβ ranges between
about 58 and 59 and the asymptotic splitting between the bottom (or tau) and
the top Yukawa coupling constants varies in the range 25−29% for central val-
ues of mb(MZ) and αs(MZ). The predicted LSP mass can be as low as about
176 GeV. Moreover, the model resolves the μ problem of MSSM, predicts
stable proton, generates the baryon asymmetry of the universe via primordial
leptogenesis, and gives rise to a new version of shifted hybrid inflation which
is based solely on renormalizable interactions.
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and P. Gondolo, Phys. Rev. D 56, 1879 (1997). (Not cited.)
38. T. Nihei, L. Roszkowski and R. Ruiz de Austri, J. High Energy Phys.

03, 031 (2002). 13
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Abstract. The most recent observations by the WMAP satellite provided us with
data of unprecedented accuracy regarding the parameters describing the Standard
Cosmological Model. The current matter-energy density of the Universe is close to
its critical value of which 73% is attributed to Dark Energy, 23% to Cold Dark
Matter and only 4% is ordinary matter of baryonic nature. The origins of the Dark
Energy (DE) and Dark Matter (DM) constitute the biggest challenge of Modern
Astroparticle Physics. Particle theories, which will be tested in the next round ex-
periments in large accelerators, such as the LHC, provide candidates for DM while
at the same time can be consistent with the DE component. We give a pedagogical
account on the DM problem and the possibility that this has supersymmetric origin.

2.1 Introduction

The first evidence for Dark Matter (DM) stemmed from observations of clus-
ters of Galaxies which are aggregates of a few hundred to a few thousand
galaxies otherwise isolated in space. In 1930 Smith and Zwicky examined
two nearby clusters, Virgo and Coma, and found that the velocities of the
galaxies making up the clusters were about ten times larger than they ex-
pected. This may be explained by assuming that there is more mass in the
clusters which accelerates the galaxies to higher velocities. In 1970 more re-
liable data, by observation of a larger number of clusters by Rubin, Freeman
and Peebles, confirmed that the velocities of the galaxies are indeed different
than one expects assuming that all matter comprising the galaxies is lumi-
nous. As you go to the edge of a spiral galaxy the amount of the light stars
emit falls off and if all matter were luminous the rotational speed would fall
off too. In fact from the distribution of luminous stars, the rotational velocity
at a distance r from the center of the galaxy turns out to be v(r) ≈ r−1/2

while observations showed instead that vobs(r) ≈ const. This cannot be ex-
plained unless there is some sort of invisible matter or “Dark”, not interacting
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electromagnetically therefore, which participates however in the gravitational
dynamics1.

Cosmologists usually measure the amount of mass and energy of the Uni-
verse in units of the critical density ρc by defining the fraction Ω ≡ ρ/ρc,
with ρ is the mass-energy density of the Universe. When Ω > 1 Uni-
verse closes. Its value is accurately determined by WMAP [1] due to the
high precision measurements of the Cosmic Microwave Background (CMB),
Ω = 1.02 ± 0.02, confirming previous claims that our Universe is almost
flat in concordance with inflation. After combining WMAP with other ex-
isting data and using the rescaled Hubble constant h we have for the di-
rectly measured quantities Ωh2, which are Hubble parameter independent,
Ωmatterh

2 = 0.134± 0.006, of which a small amount Ωbh
2 = 0.023± 0.001 is

of baryonic nature while the corresponding luminous mass density is smaller
by an order of magnitude. The deficit Ωmatterh

2−Ωbh
2 is attributed to Dark

Matter whose value at the 2σ level lies within the range

0.094 < ΩDMh2 < 0.129 .

The value of the rescaled Hubble parameter is h = 0.73±0.05 from which one
can infer the values of Ω’s. The conclusion is that our Universe is dominated
by a large amount of energy ≈ 73%, of unknown origin, the so called Dark
Energy (DE) and a large amount of mass ≈ 23%, whose composition is also
unknown the so called Dark Matter (DM). Only a small fraction, ≈ 4%,
consists of ordinary matter. Therefore 96% of our Universe is a completely
mystery!

Candidates for DM can be the neutrinos, axions, gravitinos or WIMPs
or other more exotic particles such as cryptons, Kaluza-Klein excitations or
branons existing in higher dimensional theories and so on. The energy loss
limit from SN 1987A put upper limits on axion masses, ma ≤ 10−2eV , and
on these grounds they are considered as non-thermal relics with very small
mass. From the requirement that axions do not overclose the Universe lower
limits on axion mass are imposed if one follows standard scenarios. The allowed
mass window in standard considerations is very narrow leaving little room to
believe that the axion can explain the DM of the Universe. For other more
exotic as yet undiscovered candidates, proposed in higher dimensional gravity
theories, already mentioned above, the situation is more involved and we do
not put them under consideration in these lectures.

Standard Model neutrinos and their antiparticles are existing particles
and once believed that they could explain the Universe missing mass prob-
lem. However this possibility is rather ruled out in view of the latest data. If
neutrinos are massless their density is Ων ≈ 3.5× 10−5 and their contribu-
tion to the energy – matter density of the Universe is quite small. However

1 Another explanation would be to assume that the gravitational force does not
follow the simple inverse square law at galactic distances which although cannot
be excluded it is rather ad-hoc lacking a firm theoretical foundation.
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we now know that neutrinos are not completely massless and their relics are
given by Ωνh

2 =
∑

mi/92.5. This assumes that their temperature today
is Tν = 1.95 0K = 1.7 × 10−4eV . Therefore they could offer as Hot Dark
Matter (HDM) candidates. In general the possibility that the Universe is
dominated by HDM seems to conflict with numerical simulations of structure
formation. In fact relativistic matter streaming from overdense to underdense
regions prevents structures from growing below the so called free-streaming
scale [2]. In fact the combined results from WMAP and other data imply that
Ωνh

2 < 0.0076, providing also limits on neutrino masses, and this is too low
to account for the Universe’s missing mass. Warm Dark Matter (WDM) neu-
trinos, or other low mass species, also seem unlikely. The reason is that star
formation occurs relatively late in WDM models because small scale struc-
ture is suppressed. This is in conflict with the low-l CMB measurements by
WMAP which indicate early re-ionization (at z ≈ 20) and therefore early star
formation.2 Actually it is found that WDM candidates are inconsistent with
WMAP data for masses mX ≤ 10 KeV [3] while masses larger than 100 KeV
are almost indistinguishable from Cold Dark Matter. Cold Dark Matter is
however allowed and it is perhaps the most plausible possibility and candi-
dates that may play this role naturally exist in some particle theories notably
in Supersymmetric and Supergravity theories which are believed to be the low
energy manifestation of String theories.

2.2 The Energy – Matter Content of the Universe

The Universe is homogeneous and isotropic at supergalactic scales being there-
fore described by the Friedmann-Robertson-Walker (FRW) geometry whose
metric is read from the line element [4, 5]

ds2 = −c2 dt2 + a2(t) (
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)) . (2.1)

In it a(t) is the cosmic scale factor and depending on k we distinguish three
types of Universe with the following characteristics

k Type of Universe 3-d curvature Spatial volume

1 closed k a−2 > 0 2π2a3

0 flat 0 ∞
-1 open k a−2 < 0 ∞

The expansion rate of the Universe is defined by

H =
ȧ

a
. (2.2)

2 We have assumed that structure formation is responsible for re-ionization.
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Its value today, the well known “Hubble constant”, is denoted by H0 and
can be written as H0 = 100 h0 Km/sec/Mpc3 by defining the dimensionless
quantity h0 which is usually called “rescaled Hubble’s constant”. Its value
is experimentally known with a fairly good accuracy by the WMAP data,
h0 = 0.72± 0.05. The matter – energy density of the Universe is related to
the expansion rate by

� =
3

8πGN
( H2 +

k

a2
) , (2.3)

while the “critical density” �c, is defined by,

�c =
3

8πGN
H2

0 . (2.4)

Its value is ρc = 1.88 × 10−29 h2
0 gr/cm3 = 8.1 × 10−47 h2

0 GeV 4. By
(2.3) it is seen that if the value of the matter-energy density today is �0 then
depending on whether this is larger, smaller or equal to the critical density
our Universe is close, open or flat respectively,

ρ0 > ρc k > 0 closed Universe
ρ0 = ρc =⇒ k = 0 flat Universe
ρ0 < ρc k < 0 open Universe

Recent observations by WMAP and other sources point towards a flat
Universe.

The total matter-energy density today can be expressed as fraction of the
critical density by defining the ratio

Ω =
�0

ρc
. (2.5)

This can be written as a sum

Ω =
∑
i

Ωi (2.6)

with Ωi denoting the contribution of each particle species, including the
contribution of the radiation Ωradiation and that of the cosmological constant
ΩΛ. Note that Ω’s as defined above refer to today’s values.

From observations of distant Galaxies Hubble (1929) drew the conclusion
that

dL H0 = c z (2.7)

In (2.7) dL is the luminosity distance and z the Doppler shift in the wave-
length of the emitted radiation, 1 + z = λobserver/λsource. For a moving
3 1 pc ≈ 3.26 light years.
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source with velocity v, which radiates electromagnetic radiation, v = cz and
therefore this law states that Galaxies recede with velocities given by

vr = dLH0 .

This is perhaps one of the most spectacular discoveries in the history of Astro-
physics. Our Universe is not static but it expands . FRW geometry is actually
encompassing Hubble’s law since the distance d is proportional to the cosmic
scale factor a and hence the receding velocities are v = Hd.

The luminosity distance, which is not actually the true geometric distance,
between emitter and receiver, is defined by

F =
L

4πd2
L

, (2.8)

where the flux F is the energy received in the apparatus per unit area, per unit
time and L is the “absolute luminosity”. dL would be the actual geometric
distance to the Galaxy if our Universe were static. In an expanding Universe
dL is given by [4, 5]

dL = a(t0) r1(t1) (1 + z) . (2.9)

In this t0 is observer’s time and t1 is the time the light signal was emitted
from the Galaxy. r1 is given by

∫ r1
0

dr√
1−kr2 =

∫ t0
t1

dt′
a(t′) . The 1 + z in (2.9)

effectively reduces the absolute luminosity L in (2.8) by a factor (1 + z)−2.
One power of (1 + z)−1 accounts for the fact that photons are redshifted and
their energy E′ when they reach the observer is 1+ z times smaller than their
energy when the were emitted. The other (1 + z)−1 power duly takes care of
the fact that the number of photons per unit length of the beam drops as
the light beam increases with expansion and thus the observer’s apparatus
receives less photons per unit time. Due to these two effects the observed
luminosity is Lo = L/(1 + z)−2 and (2.8) could have been equally well
expressed as F = L0/4πd2

G with dG = a(t0)r1(t1) the geometric distance
to the Galaxy.

The cosmological redshift is defined by

1 + z =
λ(t0)
λ(t)

, (2.10)

where λ(t0), λ(t) are respectively the wavelengths of the radiation today t0
and at the time of emission t. If a signal is emitted from a source at t and it
is received at t0 it is easy to show that

λ(t0)
λ(t)

=
a(t0)
a(t)

(2.11)

which has the meaning that wavelengths also scale with the cosmic scale factor
like distances. Using this we get from (2.10)
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1 + z =
a(t0)
a(t)

. (2.12)

This relation between redshists and cosmic scale factor can be used to express
the time t as function of the redshift z. Today z = 0 while z = ∞ at the
beginning, t = 0. By using H = ȧ/a it follows that

t(z) =
∫ ∞

z

dz

H (1 + z)
, (2.13)

where H as function of z is given by

H(z) = H0 [
∑
i

Ωi (1 + z)3(1+wi) + ( 1−
∑
i

Ωi )(1 + z)2 ]
1/2

. (2.14)

If the redshift of some astronomical source is known then from (2.12) we can
estimate the relative size of the Universe when light was emitted from it. For
instance quasars are characterized by z = 5.82 and from (2.12) we conclude
that our Universe was 6.82 times smaller when light was emitted from these
objects.

The luminosity distance as function of the redshift can be written as

dL = c H0
−1 |Ωk|−1/2(1 + z) sinn[ |Ωk|−1/2H0

∫ z

0

dz

H
] . (2.15)

where the function sinn(χ) is sin(χ), χ or sinh(χ) for k = 1, 0,−1 re-
spectively. Assuming only contribution of matter and cosmological constant
ΩM , ΩΛ this can be expanded in powers of z with the result

dL = cH0
−1 [ z +

z2

2
( 1 + ΩΛ −

ΩM

2
) + ... ] . (2.16)

The ellipsis in (2.16) stand for terms of order ∼ z3 and higher. The decelera-
tion parameter q0 is defined by q0 ≡ −ä0a0/a0

2 and assuming existence of
only matter and cosmological constant it is given by

q0 = −ΩΛ +
ΩM

2
. (2.17)

On account of it one observes that the coefficient of the z2/2 term in (2.16)
is exactly equal to 1− q0. In (2.16) we have kept terms up to ∼ z2 which is
necessary for the study of distant supernovae, as is the case with the SNIa,
which are characterized by redshifts in the range z = 0.16−0.62. Observations
showed that these objects appear fainter and hence at larger distances than
expected. The analyses by SCP and HZSS collaborations [6] showed that the
data are consistent with theory if one assumes the existence of a non-vanishing
contribution ΩΛ from the cosmological constant which is correlated to ΩM .
The value of ΩΛ turns out to be about 70% showing in a spectacular manner
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that the bulk of the matter-energy density of the Universe is void! From the
values of ΩΛ,M one can see that the deceleration parameter q0 is negative or
same the Universe is accelerating. The relevant Hubble diagram is shown in
Fig. 2.1. Five years after the direct evidence for the existence of a nonvanishing
cosmological constant which accelerates the Universe WMAP precision data
confirmed previous analyses leaving little room for doubt that the bulk of the
matter-energy of the Universe is vacuum energy while the majority of the
matter is invisible or Dark Matter [1].

All discussion so far assumes that our space time is four-dimensional. The
picture changes drastically if one assumes that there exist extra dimensions
(ED) that are invisible at present energies. These ideas are very popular nowa-
days in particle physics community and they are inevitable in string theories
which require the existence of extra dimensions. Especially the last five years
there is a lot of activity in the direction of the Brane World physics stirring
new interest to the field with a variety of theoretical predictions that are
waiting for their experimental confirmation (or rejection!) in the next gener-
ation high energy accelerators. In such ED scenaria not only particle physics
but also Cosmology is affected and the Standard Cosmological Model has to

Fig. 2.1. The Hubble diagram for the high-z SNIa analyzed by the SCP and HZSS
collaborations [6]
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be reconsidered. For instance in a Universe confined to a 3-brane within a
larger spacetime does not lead to Friedmann equations of the Standard Cos-
mology. In fact the Hubble expansion rate H ≡ ȧ/a is not proportional to
the density � but rather to �2 [7]. Assuming the bulk contribution is neg-
ligible at Nucleosynthesis one has a(t) ∼ t1/4. Moreover H ∼ T 4 unlike
H ∼ T 2 of the standard Cosmology. Therefore cooling is much slower and
the freezing temperature TD of the neutron to proton ratio changes from
about 0.8 MeV to about 3 MeV . Values of TD ∼ 2 MeV are then required
by Big Bang Nucleosynthesis (BBN) and since g

−1/8
∗ M(5) � 3 MeV, with

M(5) the scale characterizing the 5-dimensional Gravity, this relation cannot
be satisfied. Actually more dimensions are required. Thus it appears that al-
though ED seems a quite intriguing idea new parameters enter the game, at
least as far as Cosmology is concerned, which may upset the successes of the
Standard Cosmological Model. Within the context of these ED scenaria vari-
ous attempts to find a reasonable explanation for DE and DM have been put
forward. In these lectures we shall be more conservative and pursue the idea
that DM are non–Standard Model (SM) particles living in the standard four
space-time dimensions. The issue of extra dimension will be covered by other
speakers in this school.

2.3 The Thermal Universe

At early times the ingredients of our Universe were the Standard Model par-
ticles, and perhaps additional as yet undiscovered particle species, being in a
state of hot plasma in thermodynamic and chemical equilibrium. At a given
temperature T the energy density of a particular particle species of mass m
is given by

ρ =
π2

30
(kT )4 g(T ) . (2.18)

The functions g(T ) can not be expressed in a closed form. However for tem-
peratures, kT >> m, the particle is almost relativistic and g(T ) is just a
constant given by

g = gs N ′
B,F . (2.19)

The subscripts B or F stand for a boson or a fermion respectively, N ′
B = 1,

N ′
F = 7

8 and gs is the number of spin degrees of freedom.
In the opposite limit, kT << m, the functions g(T ) approaches its well-

known Boltzmann expression and the energy density is

ρ � gs m

(
mkT

2π

) 3
2

exp
(
− m

kT

)
. (2.20)

In this limit p << ρ, that is, we deal with a pressureless gas or “dust”.
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Especially for the photons and neutrinos the situation is as follows:
Photons: The contribution of the photons to the total matter-energy density
can be read from (2.18) with g(T ) = 2 since the photon is a massless spin-1
particle, having therefore two helicity degrees of freedom. Thus employing the
fact that today Tγ � 2.7 0K, one has,

Ωγ ≡
ργ
ρc
� 2.5 × 10−5/h2

0 . (2.21)

With h0 ≈ 0.7 this yields Ωγ � 5.2×10−5. That is, the energy density carried
by photons is five orders of magnitude smaller than the critical density.
Neutrinos: If neutrinos or antineutrinos are massless then their energy den-
sity, for each species, is given by

ρν =
7π2

240
(kTν)

4
.

In deriving this we used the fact that neutrinos and antinieutrinos are massless
and they are each characterized by one helicity state (see (2.18)). Their total
contribution to Ω can be weighted relative to Ωγ and is given by

Ων = Nν
7
16

(
Tν
Tγ

)4

Ωγ , (2.22)

where Nν counts the total number of neutrino and antineutrino species, i.e.
Nν = 6 in the Standard Model. One should note that the neutrinos’ tem-
perature Tν is different from that of photons Tγ and hence the subscripts in
the equation above. The reason is that neutrinos decouple from the cosmic
soup when the Universe’s temperature is kTD � MeV and then they expand
freely. At a lower temperature kT � 2me photons reheat, due to the anni-
hilation process e+e− → 2γ, and from entropy conservation it follows that
Tν/Tγ =

(
4
11

)1/3 after reheating. Using this we have from (2.22),

Ων � 0.115 Nν Ωγ , (2.23)

from which we deduce that the energy density of massless neutrinos is also
much smaller than the critical density of the Universe.

The situation changes for massive neutrinos however. If we assume a mas-
sive neutrino (or antineutrino), of mass mν , then its energy density, at tem-
peratures larger than its mass, is (see (2.20)), ρν � nν mν from which we have

Ων � 0.0053
∑
ν (mν/eV)

h2
0

, (2.24)

with mν in eV. In this expression the sum runs over all neutrino and
antineutrino species. Employing a value h0 � 0.7 this yields Ων �∑
ν mν/(92.5 eV). The best evidence for neutrino masses comes from the
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SuperKamionkande experiment [8] which detected oscillations νμ → ντ .
This result indicates a mass difference mντ − mνμ � 0.05 eV which points
towards small neutrino masses of the order of a few eV. However experimen-
tal data from neutrino physics do not put an upper limit to neutrino masses
able to exclude neutrinos as Dark Matter candidates. It is the WMAP data in
combination with data from other sources that almost exclude the possibility
that neutrinos can be either Hot or Warm Dark Matter as already mentioned
in the introduction. In fact the limit Ωνh

2 < 0.0076 is extracted, from which
an upper limit on

∑
ν mν can be derived as is seen in Fig. 2.2. Therefore

neutrinos contribute very little ∼ 10−2, or less, to Ω, as photons do, and
hence unable to account for the observed amount of Dark Matter.

In the evolution of the Universe one distinguishes two main epochs during
which radiation and matter dominated respectively.
Radiation Dominance: During radiation dominance, the energy density
was dominated by relativistic particles whose thermal properties, apart from
their spin content, is like that of photons. In this era p = ρ/3 and from
energy conservation it follows that d(ρ a4)/dt = 0 which is immediately
solved to yield ρ � 1/a4. Then from (2.3) the density term dominates over
k/a2 and we have an equation for the cosmic scale factor which can be solved
to yield a � t1/2. From these two we get

ρ =
3

32 π GN
t−2 , (2.25)

which on account of (2.18) yields,

T =
(

16 π3 GN

45
g(T )

)−1/4

t−1/2 . (2.26)

Fig. 2.2. WMAP bounds on Neutrino masses and their relic density, [1]
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Putting it all together, during the radiation era, the cosmic scale factor, the
energy density and the temperature behave as

a ∼ t1/2 , ρ ∼ t−2 , T ∼ t−1/2 , (2.27)

and the expansion rate is,

H = 1/2t = 1.66
√

g(T )
(kT )2

MPlanck
. (2.28)

The content of g(T ) entering (2.26) and (2.28) is different at different times. If
a massive particle with mass mi is in equilibrium with the cosmic soup, then
for temperatures kT >> mi it is relativistic and contributes either 7/8 gs or
gs, depending on whether it is a boson or a fermion, see (2.19). As the Uni-
verse expands, its temperature drops and eventually reaches a temperature for
which kT << mi. Therefore, its contribution is negligible because of Boltz-
mann suppression exp (−mi/kT ), see (2.20), and can be ignored. In Table 2.1
the values of g(T ) at different temperatures are shown along with the radia-
tion content at the temperature shown on the right. For temperatures above
the top mass, mt � 175.0 GeV , the contributions of additional non Standard
Model (SM) particles, if they exist, should be added. The contribution of the
SM Higgs boson adds +1 to g(T ) for kT > mHiggs and is not shown. The
LEP experimental limit put on the Higgs mass is mHiggs > 114 GeV , [9]. We
should remark that in Table 2.1, the effects of the neutrino decoupling and
the photon reheat have not been counted for.
Matter Dominance: After radiation dominated era the Universe started
entering the period in which matter dominated. During this period, the mass
density was much larger than the pressure ρ >> p. Then in the equation

Table 2.1. Active degrees of freedom and their contribution to g(T) for the standard
model particles

k T Content of radiation g(T )

< me γ + 3 × (ν + ν̄) 29 /4
me − mμ · · · + e+, e− 43/4
mμ − mπ · · · + μ+, μ− 57/4
mπ − Λc · · · + π+, π−, π0 69/4
Λc − ms · · · + u, ū, d, d̄, gluons 205/4
ms − mc · · · + s, s̄ 247/4
mc − mτ · · · + c, c̄ 289/4
mτ − mb · · · + τ, τ̄ 303/4
mb − MZ · · · + W +, W−, b, b̄ 369/4
MZ − mt · · · + Z 381/4
> mt · · · + t, t̄ 423/4
· · · · · · · · ·
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for the energy conservation the pressure term can be neglected leading to
d(ρ a3)/dt = 0. This is solved to yield ρ � 1/a3. Then from (2.3) we have
a1/2 ȧ = const which is solved to yield a ∼ t2/3. During the matter domi-
nated era the cosmic scale factor, the density and the temperature behave as

a ∼ t2/3 , ρ ∼ t−2 , T ∼ t−2/3 (2.29)

In this period the expansion rate is H = 2/3t. The temperature TEQ at which
the Universe entered the matter dominated era is estimated to be around
TEQ � 104 0K equivalent to 1 eV. This estimate follows by equating radia-
tion ρr and matter density ρm.
Vacuum Dominated Universe: Since the Universe expands and its tem-
perature drops, eventually the cosmological term within the density in (2.3),
if it exists, will take over. Hence it is worth exploring this case too. If the Dark
Energy of the Universe is attributed to a cosmological term with Λ > 0 this
will dominate at some epoch. During this era from (2.3), by putting ρ = Λ,
we get

(
ȧ

a

)2

� 8πGN

3
Λ (2.30)

while for the acceleration it is found

ä

a
=

8πGN

3
Λ . (2.31)

Note that in (2.30) the r.h.s is negative for Λ < 0 while the l.h.s. is positive. We
therefore conclude that in the presence of a negative cosmological constant, the
Universe never enters the regime in which the cosmological term is dominant.
In fact the cosmic scale factor, in this case, attains a maximum value before
reaching this regime. However this is not the case when the cosmological
constant is positive as we have assumed. From (8.122) we get, in this case,

a � exp

√
8πGNΛ

3
t. (2.32)

Since Λ > 0, (2.31) implies that ä > 0, that is the Universe is accelerated in
the vacuum dominated era. In other words gravitational forces are repulsive.
In this period the pressure is negative, since pvac = −ρvac = −Λ. The present
cosmological data show that our Universe has already entered into this phase.
In fact from the values of matter and energy densities we have already seen
that the deceleration parameter, see (2.17), is negative.

2.4 Dark Matter

In a hot Universe which is filled with particles interacting with each other,
these all are in thermal equilibrium, at some epoch. However as Universe cools
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and expands some of these may go out of thermal equilibrium and eventually
decouple. The equilibrium criterion is that the mean free path lm.f.p. is smaller
than the distance these particles travel since the beginning, i.e.

lm.f.p. < v t . (2.33)

If (2.33) holds, then particles will interact with the cosmic soup and there
is no way of escaping. The mean free path is defined by lm.f.p. ≡ 1/(nσ)
where σ is the interaction cross section of the particles under consideration
and n their density. Since the expansion rate is inversely proportional to time
H ∼ 1/t the equilibrium criterion (2.33) can be expressed as

Γ > H, ( Γ ≡ 1
v n σ

) . (2.34)

If Γ > H at some epoch and Γ < H at later times, then there is a
temperature TD for which Γ = H . TD is called the decoupling or freeze-out
temperature. For T ≤ TD these particles do not interact any longer with the
cosmic soup and they expand freely. Their total number, after decoupling,
remains constant and thus their density decreases with the cube of the cosmic
scale factor n ∼ 1/a3.

A notable example of this situation are neutrinos. They decoupled when
the Universe was as hot as ten million Kelvin degrees and their relics today
account for a small fraction of the total energy of the Universe. Neutrinos
interact only weakly and they are nearly massless. For temperatures below the
muon mass, that is kT < mμ, the active degrees of freedom in the hot Universe
are the photons, the neutrinos and their antiparticles, the electrons and the
positrons. The interaction cross section of neutrinos and antineutrinos with
the electrons and positrons is σν ∼ (GF /

√
π)2 (kT )2 where GF is the Fermi

coupling constant and kT is the energy neutrinos carry. The total density of
neutrinos, antineutrinos, electrons and the positrons which interact weakly
with each other is n � (kT )3, while all these are relativistic at temperatures
T >> me. Therefore, their velocities are v � 1 and the quantity Γ in (2.34) is

Γ �
(
GF /
√
π
)2 (k T )5 . (2.35)

At this temperature the expansion rate is

H = 1.66
√

g∗
(k T )2

MPlanck
. (2.36)

where g∗ is the value of the function g(T ) at this temperature which, as read
from Table 2.1, is 43/4. The neutrino freeze-out temperature is found, by
equating (2.35) and (2.36), to be k TD � 2 MeV. For T ≤ TD the neutrinos
and their antiparticles decouple and they do not interact any longer with
electrons and positrons. They can be conceived, as being in an isolated bath
at temperature Tν which equals to the photons temperature at the moment of
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decoupling. Since they do not interact any longer with the rest of the particles,
namely γ, e−, e+, their total number is locked. When the temperature reached
T ∼ 2 me the electrons and positrons started being annihilated to two photons
through the process e− e+ → 2 γ but the photons did not have enough
energy to produce back the electrons and the positrons. Because of that, the
temperature of the photons is increased (photon reheat) but this is not felt by
the neutrinos since the latter do not interact with the soup. The increase of the
photon temperature can be calculated from the conservation of entropy. Since
the neutrinos have the same temperature with the photons before photon
reheat we finally get

Tν =
(

4
11

)1/3

Tγ . (2.37)

Because of that the value of g(T ) in the first row of the Table 2.1 should be
corrected. With the effect of neutrino decoupling and photon reheat taken
into account the contributions of neutrinos and photons to the energy density
after photon’s reheat is proportional to 2 T 4

γ + (21/4) T 4
ν which gives a value

equal to 2 + (21/4) (Tν/Tγ)
4 � 3.36 for the function g(T ), which is almost

half of 29/4 appearing in Table 2.1. As already remarked neutrinos are rather
ruled out as Hot or Warm Dark Matter candidates and hence we will drop
them from the discussion in the following.

Various models of Particle Physics predict the existence of Weakly Inter-
acting Massive Particles, called for short WIMPs, that have decoupled long
ago and their densities at the present epoch may account for the “missing
mass” or Dark Matter of the Universe [10, 11, 12, 13, 14]. In Supersym-
metric theories in which R-parity is conserved the Lightest Supersymmetric
particle (LSP) is, in most of the cases, the lightest of the neutralinos χ̃,
a massive stable and weakly interacting particle. However other options are
available like for instance the gravitino, the axino or the sneutrino4 This qual-
ifies as Dark Matter candidate provided its relics is within the experimentally
determined DM relic density that is Ωχ̃ h2

0 ∼ 0.1 (for a review see [15]). Its
relic abundance can be calculated using the transport Boltzmann equation
which will be the subject of the following section.

2.5 Calculating DM Relic Abundances

2.5.1 The Boltzmann Transport Equation

The number density of a decoupled particle can be calculated by use of the
Boltzmann transport equation. Let us assume for definiteness that the LSP
particle under consideration is the neutralino, χ̃, although most of the discus-
sion can be generalized to other sort of particles as well. In order to know its
4 sneutrino is rather ruled out by accelerator and astrophysical data.
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relic abundance and compare it with the current data we should compute its
density today assuming that at some epoch χ̃ s were in thermal equilibrium
with the cosmic soup. Their density decreases because of annihilation only
since they are the LSP s and hence stable. If the χ̃ density at a time t is n(t)
then it satisfies the following equation known as Boltzmann transport equation

dn

dt
= − 3

ȧ

a
n − 〈v σ〉 ( n2 − n2

eq ) . (2.38)

In (2.38), σ is the cross section of the annihilated χ̃ s, and v is their relative
velocity. The thermal average 〈vσ〉 is defined in the usual manner as any other
thermodynamic quantity.

The first term on the r.h.s. of (2.38) is easy to understand. It expresses
the fact that the density changes because of the expansion. If we momentarily
ignore the interactions of the χ̃ s with the rest of the particles then their total
number remains constant. Therefore, n a3 = const. from which it follows, by
taking the derivative with respect the time, that the density rate is given by
the first term on the r.h.s. of (2.38). However the χ̃ s do interact and their
number decreases because of pair annihilation. In fact LSP’s are stable Majo-
rana particles and it is possible to be annihilated by pairs to Standard Model
particles. Their number is therefore reduced until the freezing-out tempera-
ture below which they do not interact any further with the remaining particles
and their total number is locked.5

Therefore, their density decreases as dn/dt = − nΓann, where the anni-
hilation rate Γann is given by Γann = v σ n. This explains the second term
on the r.h.s. of (2.38). However the χ̃ s do not only annihilate but are also
produced through the inverse process. The last term on the r.h.s of (2.38) ex-
presses exactly this fact. Note that when χ̃ s were in thermal equilibrium with
the rest of the particles and the environment was hot enough, the annihilated
products had enough energy to produce back the χ̃ s at equal rates. During
this period n = neq and the last two terms on the r.h.s. of (2.38) cancel each
other, as they should.

Thus the picture is the following. The χ̃ s are in thermal and chemical equi-
librium at early times. During this period Γ >> H , see (2.34), and n = neq.
However as the temperature drops and eventually passes k T ∼ mχ̃ the χ̃ s
annihilate but their products do not have enough thermal energy to produce
back the annihilated χ̃ s. The χ̃ s are in thermal but not in chemical equilib-
rium any more. In addition their density drops exponentially exp (−mχ̃/kT )
following the Boltzmann distribution law and Γ ≡ nvσ decreases so that
eventually at a temperature Tf , the freeze – out temperature, Γ equals to
the expansion rate H . Below this temperature Γ < H and the χ̃ s are out

5 If other unstable supersymmetric particles are almost degenerate in mass with
the χ̃ s they are in thermal equilibrium with these almost until the decoupling
temperature affecting the relic abundance of χ̃ s through the mechanism of the co-
annihilation. We drop momentarily this very interesting case from the discussion.
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of thermal equilibrium. They decouple not interacting any longer with the
cosmic soup and they expand freely. Their total number is locked to a con-
stant value and their density changes because of the expansion. Actually for
T < Tχ̃ their density is much larger than the equilibrium density n >> neq
and since Γ >> H , the first term dominates in (2.38) so that n a3 is indeed
a constant.

Concerning the cross section thermal average, in general for two annihilat-
ing particles 1, 2, under the assumption that they obey Boltzmann statistics,
which is valid for T ≤ m1,2,6 one finds [16, 17]

〈vσ12〉 =

∫∞
(m1+m2)

2 ds K1(
√

s/T ) pcm W (s)

2 m2
1 m2

2 T K2(m1/T ) K2(m2/T )
(2.39)

where pcm is the magnitude of the momentum of each incoming parti-
cle in their CM frame and K1,2 are Bessel functions. The quantity W
within the integral is related to the total cross section σ(s) through σ =
4 pcm

√
s W (s)/λ(s,m2

1,m
2
2)

7. This expression can be considerably simpli-
fied if one follows a non-relativistic treatment expanding the cross section in
powers of their relative velocity v,

v σ = a +
b

6
v2 . (2.40)

With this approximation the LSP s annihilation thermal average is

〈v σ〉 = a + (b − 3
2

a)
kT

mχ̃
. (2.41)

The non-relativistic expansion is legitime in energy regions away from poles,
some of which may be of particular physical interest, and thresholds as well.
However near such points this approximation behaves badly invalidating phys-
ical results. Thus we had better used the thermal average in the form given
by the (2.39).

The goal is to solve (2.38), in order to know the density at today’s temper-
ature T0 � 2.7 0K, provided that n = neq long before decoupling time. By
defining Y ≡ n/s, where s is the entropy density, and using a new variable
x = T/mχ̃

8, one arrives at a simpler looking equation

dY

dx
= mχ̃ 〈v σ〉

(
45GN

π
g

)−1/2

( h +
x

3
dh

dx
) ( Y 2 − Y 2

eq ) . (2.42)

6 The initial condition in solving Boltzmmann’s equation should lie in this regime
and at a point above the decoupling temperature. This is perfectly legitimate
for the case of neutralinos since their decoupling temperature is well below mχ̃,
Tf ∼ mχ̃/20.

7 λ(x, y, z) ≡ x2 + y2 + z2 − 2 (xy + yz + zx).
8 We use now units in which the Boltzmann constant k is unity, or same we absorb

it within the temperature T .
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The function h that appears in this equation counts the effective entropy
degrees of freedom related to the entropy density through s = k 2π2

45 (kT )3h(T ).
The prefactor of Y 2 − Y 2

eq is usually a large number, due to the appearance

of the gravitational constant G
−1/2
N , and this can be exploited in using numer-

ical approximations reminiscent of the WKB in Quantum Mechanics [18, 19].
One can solve this to find Y today Tγ which is very close to Y0 = Y (0),
and from this the matter density of χ̃ s. The latter is

�χ̃ = nχ̃ mχ̃ = mχ̃ s0Y0 =
2π2

45
mχ̃ h0

eff Y0 T 3
γ , (2.43)

where h0
eff ≡ h(Tγ) is today’s value for the effective entropy degrees of free-

dom which is h0
eff � 3.9189. The relic density is then

Ωχ̃ h0
2 = h0

2 �χ̃
�c

= 0.6827× 108 mχ̃

GeV
h0
effY0

(
Tγ
T0

)3

. (2.44)

In writing (2.44) we use the fact that �c = 8.1 × 10−47 h2
0 GeV 4. We have

also expressed the dependence on temperature through the ratio Tγ/T0 by
using a reference temperature T0 = 2.7 0K. The CMB temperature has been
determined by measurements of the CMB to be Tγ = 2.752 ± 0.001 0K.
The value of Y0 required can be found by solving (2.42) numerically with
the boundary condition that Y → Yeq at temperatures well above the freeze-
out temperature. The numerical solution proves to be rather time consuming
and for this reason many authors use approximate solutions which are less
accurate, by only 5–10 %, having the advantage that the calculation performs
fast and the physical content is more transparent. There are good packages
in the literature, like DarkSUSY [20] and microOMEGAs [21], which can be
used to handle numerically the Boltzmann equation and find the LSP relic
density in supersymmetric theories.

2.5.2 Approximate Solutions to Boltzmann Equation

Approximate solutions can be found under the assumption that Y � Yeq
below the freezing point xf = Tf/mχ̃ while Y � Yeq above it. Omitting
then the Yeq term in (2.42), which is valid for x between xf and x0 � 0, and
putting x = xf in (2.42) an equation for xf is derived

x−1
f = ln [ 0.03824 gs

MPlanck mχ̃√
g∗

〈v σ〉 c(c + 2) x
1/2
f ] , (2.45)

9 At today’s temperatures only photons and neutrinos contribute to heff . Its value
is almost half of 2+6× 7

8
= 7.25 one naively expects by merely counting the spin

degrees of freedom of the photons and neutrinos due mainly to the decoupling of
the neutrinos.
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which can be solved numerically to obtain xf . In this g∗ stands for the effective
energy degrees of freedom at the freeze-out temperature g∗ = g(xf ) and the
derivative term dh/dx in (2.42) has been ignored in this approximation. gs
are the spin degrees of freedom and the c(c+ 2) within this expression equals
to one. The reason we present it in the above equation is that empirically it
is found that very good approximation for the freeze-out point temperature
is obtained with values c � 1/2. The freeze out temperature for a WIMP
is close to Tf � mχ̃/20. Now that xf has been determined one can integrate
(2.42) from xf to zero, under the same assumptions, to obtain Y (0) and from
this the relic abundance. The solution for Y (0) entails to a density

�χ̃ = (
4π3

45
)
1/2 (

Tχ̃
Tγ

)3 T 3
γ

MPlanck

√
g∗

J
. (2.46)

In (2.46) the quantity J is given by the integral J ≡
∫ xf

0 〈vσ〉 dx. Recall
that g∗ = g(xf ) in the notation we follow here. In this expression the χ̃’s
temperature Tχ̃ appears explicitly which is different from that of photons. In
fact it is found [22] that due to the decoupling of both χ̃ s and neutrinos that
(Tχ̃/Tγ)

3 = 4/11 · g(Tν)/g(Tf) = 3.91/g(Tf) with Tν the neutrino decoupling
temperature and Tf that of χ̃ s. Using this and (2.46) we obtain for the relic
density Ωχ̃ h0

2 = �χ̃/(8.1× 10−47 GeV 4) the following result

Ωχ̃ h0
2 =

1.066× 109 GeV −1

MPlanck
√
g∗ J

, (2.47)

which is the expression quoted in many articles. The quantity J , which has
already been defined, is given in GeV −2 units. Note that the relic density is
roughly inverse proportional to the total cross section. This means that the
larger the cross section the smaller the relic density is and vice versa.

To have an estimate of the predicted relic density for the case of a neu-
tralino LSP we further approximate J ≈ xf 〈v σ〉f and 〈vσ〉 ∼ α/m2

χ̃ where
α is a typical electroweak coupling. Since xf is of the order of ∼ 0.1 and g∗

is � 100 for masses in the range mχ̃ � 20 GeV − 1 TeV , the relic density
(2.47) above turns out to be Ωχ̃ h2

0 ∼ 0.1 in the physically interesting region
mχ̃ � 100 GeV . Therefore we conclude that relic densities of the right order
of magnitude can naturally arise in supersymmetric theories if one interprets
the Dark Matter as due to a stable neutralino.

2.5.3 Co-annihilations

All discussion so far concerned cases in which the stable WIMP is not
degenerate in mass with other heavier species that can decay to it. Therefore
there is an epoch where the Universe is filled by SM particles and the LSPs,
whose density decreases because of pair annihilations when the temperature
starts passing the point where SM particles do not have enough energies to
produce back LSPs. However it may happen that although lighter the LSP’s
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mass mχ̃ is not very different from other particles’s masses mi that they decay
to it. In fact when δmi ≡ mi−mχ̃ ∼ Tf these particles are thermally accessible
and this implies that they are as abundant as the relic species. This drastically
affects the calculation of the LSP relic density. This effect is known as co-
annihilation [17, 23, 24, 25, 26] and it is not of academic interest. Actually in
the most popular supersymmetric schemes, advocating the existence of good
CDM candidates, there are regions having this characteristic so it is worth
discussing this case.

Since all nearly degenerate particles with the LSP will eventually decay to
it the relevant quantity to calculate for the relic abundance of the LSP is the
density n =

∑
i ni. In it ni is the density of the particle i and the sum runs

from i = 1, ...N . With i = 1 we label the LSP and with i = 2, ...N the rest
of the particles that are almost degenerate in mass with it. Following [24] the
Boltzmann transport (2.38) is generalized to,

dn

dt
= − 3

ȧ

a
n −

N∑
i,j

〈vij σij〉 ( ninj − neqi neqj ) . (2.48)

The notation in (2.48) is obvious. Since the criterion for which particles co-
annihilate with the LSP is roughly given by δm ∼ Tf and Tf � mχ̃/20 the
particles participating in the co-annihilation process are those for which the
mass differences are δmi � 5% mχ̃. Their equilibrium densities are given by
neqi = gi

T
2π m2

iK2(mi/T ) where gi denotes the spin degrees of freedom.
Approximating ni/n � neqi /neq, (2.48) can be cast in the following form

dn

dt
= − 3

ȧ

a
n −

N∑
i,j

〈v σeff 〉 ( n2 − n2
eq) . (2.49)

where the effective thermal average appearing in this equation is a general-
ization of (2.39) given by

〈vσeff 〉 =
N∑
i

neqi neqj
n2
eq

〈vijσij〉 . (2.50)

This can be written as a single integral generalizing the results of [16]

〈vσeff 〉 =

∫∞
2 da K1(a/x)

∑
i,j λ(a2, b2i , b

2
j) gigj σij(a)

4x (
∑

i gib
2
iK2(bi/x))2

, (2.51)

where bi ≡ mi/mχ̃ with χ̃ denoting the LSP labelled by i = 1. If we seek
for an approximate solution, as was done in the no co-annihilation case, then
the freeze-out point is

x−1
f = ln [ 0.03824 geff

MPlanck mχ̃√
g∗

〈v σeff 〉 c(c + 2) x
1/2
f ] . (2.52)
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In this geff is defined as

geff ≡
∑
i

gi ( 1 + Δi )3/2 exp (−Δi/xf ) (2.53)

where Δi ≡ (mi−mχ̃)/mχ̃. As for the relic abundance, this is given by (2.47)
with the quantity J defined now as J ≡

∫ xf

0
〈vσeff 〉 dx. In calculating this

we have made use of the fact that all nearly degenerate particles with the LSP
will eventually decay and therefore the final LSP abundance will be extracted
from n =

∑
i ni. In supersymmetric models the relevant co-annihilation

channels are between neutralinos, charginos and sfermions.
As a preview of the importance of the co-annihilation process we mention

that the cosmological bound on the LSP neutralino is pushed to � 600 GeV,
from about 200 GeV in the stau co-annihilation region and to 1.5 TeV
in the chargino co-annihilation, increasing upper bounds and weakening the
prospects of discovering supersymmetry in high energy accelerators.

2.6 Supersymmetry and its Cosmological Implications

Supersymmetry, or SUSY for short, is a fermion-boson symmetry and it is an
indispensable ingredient of Superstring Theories. Fermions and bosons go in
pairs (partners) having similar couplings and same mass!. Spontaneous Sym-
metry Breaking (SSB) of local SUSY at Planckian energies makes the partner
of the graviton, named gravitino, massive m3/2 
= 0 (SuperHiggs ef-
fect) and lifts the mass degeneracy between fermions and bosons by amounts
MS, a parameter which depends on the particular supersymmetry breaking
mechanism. At much lower energy scales E � MPlanck, accessible to LHC
if MS � O(TeV ), the theory is supersymmetric but there appear terms that
break SUSY softly. These are scalar mass terms, gaugino mass terms or scalar
trilinear couplings m0, M1/2, A0 (for a review see [27]). Supersymmetric ex-
tensions of the SM naturally predict the existence of Dark Matter candidates
which is the LSP. This may be the “Neutralino” or the “Gravitino”, whichever
is the lightest, or other non-SM particle provided its relic abundance is within
the cosmological limits while all accelerator bounds are respected.

In supersymmetric theories the generators of the fermion-boson symmetry
are spinorial operators Q, Q† which turn a boson state to a fermion and
vice versa,

Q† | boson 〉 = |fermion〉 (2.54)
Q |fermion〉 = | boson〉 . (2.55)

These commute with the supersymmetric Hamiltonian HS ,

[HS , Q] = [HS , Q
†] = 0 (2.56)

resulting to a degenerate mass spectrum between fermions and bosons. The
field content of a supersymmetry theory is larger than in ordinary theories
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in the sense that additional degrees of freedom are needed, the so called
“sparticles”, that are superpartners of the known particles. The most eco-
nomic supersymmetric extension of the Standard Model, known as MSSM
(Minimal Supersymmetric Standard Model) has the physical content appear-
ing in Table 2.2. In it the SM particles are shown on the left with their cor-
responding spins and their superpartners on the right. Note that unlike the
SM the Higgses H1,2 are not independent and thus five Higgses survive the
Electroweak Symmetry Breaking. In addition MSSM can posses a symmetry
known as R-parity under which each particle bears a quantum number

PR = ( −1)3 (B−L) + 2 s
, (2.57)

with B,L the baryon and lepton number of the particle and s its spin. PR
is +1 for particles and −1 for the superparticles. This quantum number is mul-
tiplicatively conserved in theories possessing R-parity and prohibits Baryon
and Lepton number violations. Another virtue of this symmetry is the fact
that the lightest supersymmetric particle (LSP) is stable. The reason for this
is that, in R – parity conserving theories, the vertices have an even number
of sparticles. Because of this, a sparticle can only decay to an odd number of
sparticles and an even or odd number of SM particles. For the LSP such a
decay is however energetically forbidden since it is the lightest sparticle and
hence it is stable. If, in addition, it is electrically neutral and does not interact
strongly the LSP qualifies as a WIMP.

The CMSSM (constrained MSSM) is the most popular and extensively
studied supersymmetric model encompassing SM. It is motivated by the min-
imal supergavity theories (mSUGRA) and differs from MSSM in that uni-
versal boundary conditions are imposed for the scalar, gaugino and trilinear
couplings at a unification scale so that there is a single m0, M1/2 and A0.
These along with the ratio 〈H2〉 / 〈H1〉 can be chosen to be the only arbitrary
parameters of the theory. Other parameters μ,m2

3, inducing mixing between
the Higgs multiplets are determined from the electrowek symmetry breaking
conditions10.

Table 2.2. Particle content of the minimal supersymmetric standard model

SM particles SUSY particles

Particle Name Spin Sparticle Name Spin

q quarks 1/2 q̃ squarks 0

l leptons 1/2 Q, Q† l̃ sleptons 0

W±, W 0 W-bosons 1 ⇐⇒ W̃±, W̃ 0 winos 1/2

B B-boson 1 B̃ bino 1/2

G gluons 1 G̃ gluinos 1/2

H1,2 Higgses 0 H̃1,2 Higgsinos 1/2

10 The sign of μ is also a free parameter.
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2.6.1 The Neutralino DM

The neutral components of the Higgsinos H̃0
1,2, the neutral “wino” W̃ 0 and

the “Bino” B̃ (see Table 2.2) interact weakly but they are not mass eigen-
states. The four mass eigenstates χ̃0

i i = 1, ...4, named “Neutralinos”, are
linear combinations of these. These are Majorana fermions which means that
particles are same as their antiparticles and thus they possess half the degrees
of freedom of a “charged” Dirac particle like the electron for instance.

In the MSSM, briefly discussed in the previous section, and depending
on the inputs for the SUSY breaking parameters m0, M1/2, A0 and tanβ,
the lightest of the neutralinos, which we shall denote by χ̃, may be the LSP.
Being a linear combination of the Higgsinos, Wino and Bino fields this can be
written as

χ̃ = a1 H̃0
1 + a2 H̃0

2 + aW W̃ 0 + aB B̃ . (2.58)

where normalization requires that
∑
i |ai|

2 = 1. Depending on the magni-
tudes of ai appearing in (2.58) we can distinguish the following two cases

|a1|2 + |a2|2 >> |aW |2 + |aB|2, (Higgsino− like)

|a1|2 + |a2|2 << |aW |2 + |aB|2, (gaugino− like) . (2.59)

In the upper case the LSP is mostly Higgsino and in the lower mostly Gaugino.
Other cases encountered in model studies are somewhere in between. In the
CMSSM, the χ̃ is gaugino – like, actually a bino, in the major portion of the
parameter space11. Absence of its detection in accelerator experiments puts a
lower bound on its mass, mχ̃ > 46 GeV.

If χ̃ is the LSP, and thus stable in R - parity conserving theories, then at
some epoch, the cosmic soup contains the χ̃’s and Standard Model particles.
All other supersymmetric particles have already decayed to χ̃ and SM par-
ticles. Then the number of the LSP particles can only decrease through pair
annihilations to SM particles through the reactions χ̃ + χ̃ → A + B + ....
In the MSSM and in leading order in the coupling constants involved, only
two body pair annihilations take place and the SM particles in the final state
occur in the combinations displayed in Table 2.3. As already remarked, in
the minimal supersymmetric extension of the Standard Model, there exist five
Higgs mass eigenstates H±, H, h,A, the last three being neutral, in contrast to
the Standard Model where only one neutral Higgs survives after Electroweak
Symmetry breaking. We should mention that an upper theoretical bound on
the lightest of the neutral Higgses mass mh exists which is ≈ 138 GeV.

Accelerator experiments impose various constraints on sparticle masses
which along with the cosmological bound on the DM relic abundance restricts
11 There are narrow regions in the parameter space, like for instance the so-called

Hyperbolic Branch, which are of particular phenomenological interest and in
which the LSP may be a Higgsino.
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Table 2.3. Neutralino pair annihilations χ̃χ̃ → A + B

Particles in the final state A , B

Fermion − Antifermion : q q̄
l l̄

Gauge Bosons : W + W−

Z Z
Gauge Bososn + 1Higgs : W± H∓

Z A
Z H
Z h

Higgses : H+ H−

H H
h h
H h
A H, A h
A A

the allowed parameter space describing the model. The potential of discovering
supersymmetric particles in future experiments depends on the bounds put
on sparticle masses and these are constrained by the cosmological data. LEP
and Tevatron colliders give a lower bound of 104 GeV for the chargino mass
while sleptons should not weigh less than about 99 GeV . The bounds imposed
on all sparticles can be traced in [28]. LEP has also provided us with the
important Higgs mass bound mh > 114 GeV [9]. Other important constraints
stem from the decay b → s γ whose branching ratio should lie in the range
1.8 × 10−4 < BR(b → s γ) < 4.5 × 10−4 at the 2 σ level [29, 30]. The BNL
E821 experiment derived a very precise value for the anomalous magnetic
moment of the muon αμ ≡ (gμ − 2)/2 = 11659203(8)× 10−10 [31] pointing
to a discrepancy between the SM theoretical prediction and the experimental
value given by δαμ = ( 361 ± 106 ) × 10−11 which shows a 3.3σ deviation.
This can put severe upper bounds on sparticle masses. However theoretical
uncertainties due to disagreement between the e+e− and τ decay data used
to calculate the contributions to gμ− 2 forces us to consider these data with
a grain of salt until the disagreement between the two theoretical approaches
is finally resolved [32].

There are numerous phenomenological analyses by various groups and re-
gions in the parameter space which are compatible with cosmological and
accelerator data have been delineated. Three main regions have been iden-
tified as conforming with all data. The “funel” region m0 ∼ M1/2 in which
neutralinos rapidly annihilate via direct s-channel pseudoscalar Higgs poles,
which opens up for large values of tanβ, χ̃, τ̃ (stau) co-annihilation re-
gion which extends to large M1/2 >> m0 and the hyperbolic branch (HB),
which includes the “focus point” region, in which m0 ∼ few TeV >> M1/2.
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Fig. 2.3. mSUGRA/CMSSM constraints after WMAP. The very dark shaded region
(dark blue) is favoured by WMAP (0.094 ≤ Ωχh2 ≤ 0.129). In the medium shaded
region (turqoise) 0.1 ≤ Ωχh2 ≤ 0.3. The shaded region at the bottom (brick red) is
excluded because LSP is charged. Dark regions (green) on the left are excluded by
b → sγ. The shaded stripes (pink) on the left are favoured by gμ − 2 at the 2 − σ
level. The LEP bounds on the chargino mass 104 GeV and the Higgs mass 114 GeV
are also shown. (from [33])

In Fig. 2.3 the allowed regions in the m0,m1/2 plane are displayed showing
clearly the tight constraints imposed by the WMAP data in conjunction with
accelerator bounds. In Table 2.4, upper bounds on sparticle masses are shown
which are derived if the WMAP value for ΩCDM h2

0 is imposed and the 2σ
E821 bound 149 × 10−11 < αSUSYμ < 573 × 10−11 is observed satisfying at
the same time all other experimental constraints. From this table it can be
seen that Supersymmetry (CMSSM) will be accessible in the LHC and to any
or other linear e+e− collider with center of mass energy ≥ 1.1 TeV [34].

Table 2.4. Upper bounds, in GeV, on the masses of the lightest of the neutralinos,
charginos, staus, stops and Higgs bosons for various values of tan β if the new WMAP
value [1] for ΩCDMh2 and the 2σ E821 bound, 149×10−11 < αSUSY

μ < 573×10−11 ,
is imposed (from [34])

tan β χ̃ χ+ τ̃ t̃ Higgs

10 155 280 170 580 116
15 168 300 185 640 116
20 220 400 236 812 118
30 260 470 280 990 118
40 290 520 310 1080 119
50 305 553 355 1120 119
55 250 450 585 970 117



2 LSP as a Candidate for Dark Matter 59

From this it is apparent the importance of the E821 results and the need
of further theoretical work lifting the discrepancies concerning the muon’s
anomalous magnetic moment calculations. Detailed studies have shown that
the LHC will probe the region of the parameter space allowed by Cosmol-
ogy and present accelerator data even if the data by E821 are not taken into
account [36] as is seen in Fig. 2.4. In a χ2 analysis performed in [37] it is
shown that particular regions of the parameter space are favoured including
the focus point region and the fast s – channel Higgs resonance annihilation
as shown in Fig. 2.5.

Supersymmetric direct DM searches through elastic neutralino-Nucleon
scattering χ̃+N → χ̃+N are very important for DM detection. The rates for
the spin-independent cross sections as calculated in the CMSSM are of the or-
der σs.i. ∼ 10−7−10−8 pb at the maximum, still far from the sensitivity limits
of CDMS II experiment as shown in Fig. 2.6. The spin independent cross sec-
tion will be of interest for future experiments, CDMS, EDELWEISS, ZEPLIN
and GENIUS, which will search for DM and will access the as yet unexplored
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Fig. 2.4. Scatter plot of the masses of the lightest visible supersymmetric par-
ticle (LVSP) and the next-to-lightest visible supersymmetric particle (NLVSP) in
the CMSSM. The darker (blue) triangles satisfy all the laboratory, astrophysical
and cosmological constraints. For comparison, the dark (red) squares and medium-
shaded (green) crosses respect the laboratory constraints, but not those imposed
by astrophysics and cosmology. In addition, the (green) crosses represent models
which are expected to be visible at the LHC. The very light (yellow) points are
those for which direct detection of supersymmetric dark matter might be possible
(from [36])
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Fig. 2.5. WMAP data seem to favour ( χ2

dof
< 4/3) the HB/focus point region (mod-

erate to large values of μ, large m0 scalar masses) for almost all tanβ (narrow stripe
on the right of the Left panel), as well as s - channel Higgs resonance annihilation
(ring-like stripe on the Right panel) for μ > 0 and large tanβ (from [37])

CMSSM region [38]. The present status and the sensitivity of future experi-
ments, in conjuction with the theoretical predictions, is displayed in Fig. 2.7.

The annihilations of relic particles in the Galactic halo, χ̃χ̃→ p̄, e+ + ...,
the Galactic center χ̃χ̃→ γ+ ... or the core of the Sun χ̃χ̃→ ν+ ...→ μ+ ...
are of great interest too. The annihilation positrons in the CMSSM seem to fall
below the cosmic-ray background. The annihilated photons may be detected in
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Fig. 2.6. (a) Left panel. Scatter plot of the spin independent neutralino-nucleon
elastic cross section vs. mχ predicted in the CMSSM. + signs are compatible with
the E821 experiment and also cosmologically acceptable. The sample consists of
40,000 random points (for details see [34]). (b) Right panel. The same as in panel a)
for tan β = 50, μ > 0, with σπN = 64 MeV. The predictions for models allowed at
the 68% (90%) confidence are shown by × signs (from [35])
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GLAST experiment, while the annihilations inside the Sun may be detectable
in the experiments AMANDA, ANTARES, NESTOR and IceCUBE [40].

2.6.2 The Gravitino

The gravitino, g3/2, spin-3/2 superpartner of the graviton in Supergravity
theories, gets non-vanishing mass after spontaneous symmetry breaking of
local supersymmetry. The couplings of the gravitino are suppressed by the
Planck scale. The dominant gravitino couplings are discussed in Sect. 1.6 in
the Lazarides’ article (see in particular (1.28)). Gravitino couples to the su-
persymmetric matter and if its mass m 3/2 is larger than that of the lightest
of the neutralinos χ̃ it can decay gravitationally to it through g 3/2 → χ̃ + γ.
If it is lighter than χ̃ then it is the LSP and χ̃ decays to it via χ̃→ g 3/2 + γ.
Such decays produce electromagnetic radiation and may be upset the Big
Bang Nucleosynthesis (BBN) predictions for the light element abundances. In
fact the emitted Electromagnetic radiation can destroy D,4 He,7 Li and/or
overproduse 6Li.

The most direct and accurate estimate of the baryon to photon ratio
η = nB/nγ is provided by the acoustic structures of the CMB perturba-
tions [1] and its value, η = 6.14± 0.25× 10−10, controls the BBN calculations
yielding very definite predictions for the abundances of the light elements as
shown in Table 2.5. The predicted values quoted in the table are impressively
close to the observed values with the exception of the Lithium cases. In fact
the prediction for 7Li is predicted higher, by almost a factor of three, than the
values of the astrophysical data and 6Li is predicted much smaller by a fac-
tor of 10−3. However these discrepancies are not disturbing due to the large
systematic errors existing in the astrophysical data. The decays of massive
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Table 2.5. Predictions of the light element abundances

Element Predicted1 Observed

Yp 0.2485 ± 0.0005 0.232 to 0.258

D/H 2.55+0.21
−0.20 × 10−5 2.78 ± 0.29 × 10−5

3He/H 1.01 ± 0.07 × 10−5 1.5 ± 0.5 × 10−5

7Li/H 4.26+0.73
−0.60 × 10−10 1.23+0.68

−0.32 × 10−10

6Li/H 1.3 ± 0.1 × 10−14 6+7
−3 × 10−12

1R. H. Cyburt, Phys. Rev. D70 (2004) 023505

unstable products with lifetimes τ > 102 s produce Electromagnetic radi-
ation and or hadronic showers in the Early Universe which may destroy or
create nuclei spoiling the successful BBN predictions. The agreement with
BBN imposes limits to the density of the decaying particles which depend on
their lifetimes and on the value of η. These limits are shown in Fig. 2.8 [41]
where the quantity ζX is defined as ζX ≡ mX nX/nγ . For instance if a decay-
ing particle X has a lifetime τX = 108 s, the bound on the ζX extracted from
this figure is mX nX/nγ < 5×10−12, with mX in GeV units (from [41]). These
constraints were updated in [42] where the effects of unstable heavy particles

Fig. 2.8. Limits on ζX , τX imposed by the abundances of the light elements.
Shaded (Colored) areas are excluded. Dark(Red)=6Li, Heavy Grey(Green)=7Li,
Light Grey(Yellow)=6Li/7Li, Medium Grey(Light Blue)=D/H (from [41])
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were reconsidered in an attempt to reconcile the high primordial 7Li abun-
dance, as implied by the baryon-to-photon ratio, with the lower 7Li observed
in halo stars. In Supergravity the gravitino can either decay to g 3/2 → χ̃+γ
or, if it is the LSP, χ̃→ g 3/2 +γ as mentioned earlier. These late decays can
affect the light element abundances and the previously discussed limits apply.

a) Unstable gravitino (m3/2 > mχ̃):
The gravitino’s decay width is

Γ (g 3/2 → χ̃ + γ) =
1
4

m 3
3/2

MPlanck
O2
χ̃γ̃ , (2.60)

Where Oχ̃γ̃ is the matrix element relating the mass eigenstate χ̃ to the photino
γ̃. Assuming for the sake of the argument that χ̃ is a bino, χ̃ = B̃, this matrix
element is Oχ̃γ̃ = cos θw. Then if no other decay is significant

τ3/2 = 2.9× 108

(
100 GeV

m3/2

)3

s . (2.61)

With a gravitino mass in the range 100 GeV −10 TeV the gravitino’s lifetime
is τ3/2 = 102 − 108 s, so it is indeed a late decaying particle. On the other
hand the thermal production of the gravitinos is estimated to be [43]

Y3/2 ≡
n3/2

nγ
= 1.2× 10−11 ( 1 +

m2
g̃

12 m2
3/2

)
TR

1010 GeV
, (2.62)

with TR the maximum temperature reached in the Universe. With reasonable
values of the gluino and gravitino masses mg̃,m3/2

Y3/2 � ( 0.7 − 2.7 )× 10−11 TR
1010 GeV

. (2.63)

From the BBN limits which we discussed previously we can infer limits on
Y3/2. For instance for a gravitino mass 100 GeV with lifetime τ3/2 = 108 s
we get

Y3/2 ≤ 5× 10−14 , (2.64)

and relations (2.63) and (2.64) are combined to yield an upper limit on TR

TR < 7× 107 GeV . (2.65)

This limit is much smaler than the reheating temperature expected in infla-
tionary models TR � 1012 GeV . Therefore with unstable gravitinos we need
an explanation to resolve this problem.

a) Stable gravitino (m3/2 < mχ̃):
With a stable gravitino the next to it NSP (Next Supersymmetric Particle),
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which can be the τ̃ or χ̃, can decay to it. For the neutralino χ̃ decay we have
for instance

Γ ( χ̃→ g 3/2 + γ̃) =
1

16 π

O2
χ̃γ

M2
Planck

m 5
χ̃

m2
3/2

(
1−

m2
3/2

m 2
χ̃

) 3 (
1
3

+
m2

3/2

m 2
χ̃

)

(2.66)
with Oχ̃γ̃ = O1χ̃ cos θw + O2χ̃ sin θw. The DM gravitino is produced via the
decay NSP→ g 3/2 + γ and its relic density is

Ω3/2 h2
0 =

m3/2

mNSP
ΩNSP h2

0 < ΩNSP h2
0 . (2.67)

From the BBN constraints and especially from 6Li abundance

nNSP
nγ

< 5× 10−14

(
100 GeV

mNSP

)
, (2.68)

for τNSP = 108 s, before the decay of the NSP. Using nB/nγ = 6× 10−10 we
have the bounds

ΩNSP h2
0 <

10−2

mNSP
ΩB h2

0 < 10−2 ΩB h2
0 ∼ 2× 10−4 . (2.69)

Plugging (2.69) into (2.67) yields the bound

Ω3/2 h2
0 < 2× 10−4 (2.70)

This is too small far away from ∼ 0.1 required by the cosmological data. At
this point recall that values in the range 0.1 are generic in supersymmetric
models having the lightest of the neutralinos as the LSP. However in deriving
this estimate we assumed a lifetime for the NSP of the order of ∼ 108 s. For
shorter lived NSPs this tight constraint is relaxed. However still Ω3/2 h2

0 <
ΩNSP h2

0 and on account of the fact that ΩNSP h2
0 ∼ 0.1 we may

need some supplementary mechanisms to produce gravitinos as for instance
reheating after inflation in addition to NSP decays.

In the analysis of [44], whose arguments we closely followed in the pre-
vious discussion, the authors calculate the relic density the NSP would have
today if it had not decayed, ΩNSP h2

0 = 3.9 × 107 ζNSP GeV −1, compute
the lifetime τNSP and impose the detailed bounds from BBN on ζNSP .
They delineate regions of the parameter space where the gravitino relic den-
sity Ω3/2 h2

0 = m3/2

mNSP
ΩNSP h2

0 is less than 0.129 the highest CDM matter
density allowed by WMAP data at 2σ. In their analysis they do not consider
regions in which τNSP < 104 s. For such short lifetimes the hadronic decays
should be considered too which would give additional constraints strengthen-
ing the limits on gravitino DM derived on the basis of the Electromagnetic
showers only. Some sample outputs of the limits imposed are shown in Fig. 2.9.
In the light grey (yellow) shaded areas, designated by r < 1, Ω3/2 h2

0 < 0.129
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Fig. 2.9. The (m0, M1/2) planes for tan β = 10 and values of the gravitino mass
equal to 10 GeV (left panel) and m3/2 = m0 (right panel). In the shaded area
designated by r < 1 we have Ω3/2 h2

0 < 0.129 and the BBN limits are observed
(from [44])

and the BBN limits, as well as all accelerator data, are observed. In the allowed
domain the relic density is typically less than that favoured by astrophysics
and cosmological data and as already remarked supplementary mechanisms
for the production of gravitinos may be needed for these to constitute the DM
of the Universe.

2.7 Conclusions

Supersymmetric Cold Dark Matter is offered as a plausible explanation for
explaining the missing mass of the Universe. Supersymmetric Theories will be
tested in the near future at LHC or other high energy machines and will con-
firm or refute the existence of supersymmetry with consequences of paramount
importance for the future of the small scale physics. The confirmation of the
existence of supersymmetric matter in the laboratory will have important
consequences for Astrophysics too. The abundances of the LSP neutralinos
in supersymmetric models come out to be in the right amount as required
by astrophysical observations and it is the ideal candidate for explaining the
DM problem. The gravitinos are also good CDM candidates but their case
needs further investigation. In the most of the parameter space describing
supersymmetric theories the relic density of the gravitino is less than that re-
quired by observations and significant thermal gravitino production is needed
in addition to the NSP decay mechanism. The precision of the cosmological
data is a valuable input for particle physics. In conjunction with the labora-
tory experiments they put severe phenomenological constraints which particle
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physicists should observe enabling them to learn more on fundamental scale
physics from the Universe.
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Abstract. Various issues related to the direct detection of supersymmetric dark
matter are reviewed. Such are: 1) Construction of supersymmetric models with a
number of parameters, which are constrained from the data at low energies as well as
cosmological observations. 2) A model for the nucleon, in particular the dependence
on the nucleon cross section on quarks other than u and d. 3) A nuclear model,
i.e. the nuclear form factor for the scalar interaction and the spin response function
for the axial current. 4) Information about the density and the velocity distribu-
tion of the neutralino (halo model). Using the present experimental limits on the
rates and proper inputs in 3)-4) we derive constraints in the nucleon cross section,
which involves 1)-2). Since the expected event rates are extremely low we consider
some additional signatures of the neutralino nucleus interaction, such as the peri-
odic behavior of the rates due to the motion of Earth (modulation effect), which,
unfortunately, is characterized by a small amplitude. This leads us to examine the
possibility of suggesting directional experiments, which measure not only the energy
of the recoiling nuclei but their direction as well. In these, albeit hard, experiments
one can exploit two very characteristic signatures: a)large asymmetries and b) in-
teresting modulation patterns. Furthermore we extended our study to include eval-
uation of the rates for other than recoil searches such as: i) Transitions to excited
states, ii) Detection of recoiling electrons produced during the neutralino-nucleus
interaction and iii) Observation of hard X-rays following the de-excitation of the
ionized atom.

3.1 Introduction

The combined MAXIMA-1 [1], BOOMERANG [2], DASI [3], COBE/DMR
Cosmic Microwave Background (CMB) observations [4], the recent WMAP
data [6] and SDSS [7] imply that the Universe is flat [5] and and that most of
the matter in the Universe is dark, i.e. exotic.

Ωb = 0.044± 0.04, Ωm = 0.27± 0.04, ΩΛ = 0.69± 0.08

for baryonic matter, cold dark matter and dark energy respectively. An analy-
sis of a combination of SDSS and WMAP data yields [7] Ωm ≈ 0.30±0.04(1σ).
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Crudely speaking and easy to remember

Ωb ≈ 0.05, ΩCDM ≈ 0.30, ΩΛ ≈ 0.65 .

Additional indirect information comes from the rotational curves [8]. The ro-
tational velocity of an object increases so long is surrounded but matter. Once
outside matter the velocity of rotation drops as the square root of the dis-
tance. Such observations are not possible in our own galaxy. The observations
of other galaxies, similar to our own, indicate that the rotational velocities of
objects outside the luminous matter do not drop. So there must be a halo of
dark matter out there. Since the non exotic component cannot exceed 40% of
the CDM [9], there is room for exotic WIMP’s (Weakly Interacting Massive
Particles).

In fact the DAMA experiment [10] has claimed the observation of one
signal in direct detection of a WIMP, which with better statistics has sub-
sequently been interpreted as a modulation signal [11]. These data, however,
if they are due to the coherent process, are not consistent with other recent
experiments, see e.g. EDELWEISS and CDMS [12]. It could still be inter-
preted as due to the spin cross section, but with a new interpretation of the
extracted nucleon cross section. The above developments are in line with par-
ticle physics considerations. Thus, in the currently favored supersymmetric
(SUSY) extensions of the standard model, the most natural WIMP candi-
date is the LSP, i.e. the lightest supersymmetric particle. In the most favored
scenarios the LSP can be simply described as a Majorana fermion, a lin-
ear combination of the neutral components of the gauginos and Higgsinos
[8, 9, 10, 11, 12, 13].

Since this particle is expected to be very massive, mχ ≥ 30GeV , and
extremely non relativistic with average kinetic energy T ≤ 100KeV , it can
be directly detected mainly via the recoiling of a nucleus (A,Z) in the elastic
scattering process:

χ + (A,Z) → χ + (A,Z)∗ (3.1)

(χ denotes the LSP). In order to compute the event rate one needs the
following ingredients:

1. An effective Lagrangian at the elementary particle (quark) level obtained
in the framework of supersymmetry [8, 13] and [15]. One starts with rep-
resentative input in the restricted SUSY parameter space as described in
the literature, e.g. Ellis et al. [14], Bottino et al., Kane et al., Castano
et al. and Arnowitt et al. [15] as well as elsewhere [18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. We
will not, however, elaborate on how one gets the needed parameters from
supersymmetry, since this topic will be covered by another lecture in this
school by professor Lahanas. For the reader’s convenience, however, we
will give a description in Sect. 3.3 of the basic SUSY ingredients needed
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to calculate LSP-nucleus scattering cross section. Our own SUSY input
parameters can be found elsewhere [16, 17].

2. A procedure in going from the quark to the nucleon level, i.e. a quark
model for the nucleon. The results depend crucially on the content of the
nucleon in quarks other than u and d. This is particularly true for the
scalar couplings as well as the isoscalar axial coupling [41, 42, 43]. Such
topics will be discussed in Sect. 3.4.

3. computation of the relevant nuclear matrix elements [44, 45, 46, 47, 48,
49, 50, 51] using as reliable as possible many body nuclear wave functions.
By putting as accurate nuclear physics input as possible, one will be able
to constrain the SUSY parameters as much as possible. The situation is a
bit simpler in the case of the scalar coupling, in which case one only needs
the nuclear form factor.

4. Convolution with the LSP velocity Distribution. To this end we will con-
sider here Maxwell-Boltzmann [8] (MB) velocity distributions, with an
upper velocity cut off put in by hand. Other distributions are possible,
such as non symmetric ones, like those of Drukier [53] and Green [54],
or non isothermal ones, e.g. those arising from late in-fall of dark matter
into our galaxy, like Sikivie’s caustic rings [55]. In any event in a proper
treatment the velocity distribution ought to be consistent with the dark
matter density in the context of the Eddington theory [56].

After this we will specialize our study in the case of the nucleus 127I, which
is one of the most popular targets [10, 45].

Since the expected rates are extremely low or even undetectable with
present techniques, one would like to exploit the characteristic signatures pro-
vided by the reaction. Such are:

1. The modulation effect, i.e. the dependence of the event rate on the velocity
of the Earth

2. The directional event rate, which depends on the velocity of the sun
around the galaxy as well as the the velocity of the Earth. has recently
begun to appear feasible by the planned experiments [47, 48].

3. Detection of other than nuclear recoils, such as
– Detection of γ rays following nuclear de-excitation, whenever possible

[49, 50].
– Detection of ionization electrons produced directly in the LSP-nucleus

collisions [57, 58].
– Observations of hard X-rays produced [59], when the inner shell elec-

tron holes produced as above are filled.

In all calculations we will, of course, include an appropriate nuclear form
factor and take into account the influence on the rates of the detector energy
cut off. We will present our results a function of the LSP mass, mχ, in a way
which can be easily understood by the experimentalists.
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3.2 The Nature of the LSP

Before proceeding with the construction of the effective Lagrangian we will
briefly discuss the nature of the lightest supersymmetric particle (LSP) focus-
ing on those ingredients which are of interest to dark matter.

In currently favorable supergravity models the LSP is a linear combina-
tion [8] of the neutral four fermions B̃, W̃3, H̃1 and H̃2 which are the super-
symmetric partners of the gauge bosons Bμ and W 3

μ and the Higgs scalars H1

and H2. Admixtures of s-neutrinos are expected to be negligible.
In the above basis the mass-matrix is given in Lazarides’ article rela-

tion (1.7) [8, 13] where tanβ = 〈υ2〉/〈υ1〉 is the ratio of the vacuum expecta-
tion values of the Higgs scalars H2 and H1 and μ is a dimensionful coupling
constant which is not specified by the theory (not even its sign).

By diagonalizing the above matrix we obtain a set of eigenvalues mj and
the diagonalizing matrix Cij as follows

⎛
⎜⎜⎝

B̃R
W̃3R

H̃1R

H̃2R

⎞
⎟⎟⎠ = (CR

ij )

⎛
⎜⎜⎝

χ1R

χ2R

χ3R

χ4R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

B̃L
W̃2L

H̃1L

H̃2L

⎞
⎟⎟⎠ = (Cij)

⎛
⎜⎜⎝

χ1L

χ2L

χ3L

χ4L

⎞
⎟⎟⎠ (3.2)

with CR
ij = C∗

ije
iλj The phases are λi = 0, π depending on the sign of the

eigenmass.
Another possibility to express the above results in photino-zino basis

γ̃, Z̃ via

W̃3 = sinθW γ̃ − cosθW Z̃ , B̃0 = cosθW γ̃ + sinθW Z̃ . (3.3)

In the absence of supersymmetry breaking (M1 = M2 = M and μ = 0) the
photino is one of the eigenstates with mass M . One of the remaining eigen-
states has a zero eigenvalue and is a linear combination of H̃1 and H̃2 with
mixing sinβ. In the presence of SUSY breaking terms the B̃, W̃3 basis is su-
perior since the lowest eigenstate χ1 or LSP is primarily B̃. From our point of
view the most important parameters are the mass mx of LSP and the mixing
Cj1, j = 1, 2, 3, 4 which yield the χ1 content of the initial basis states.

We are now in a position to find the interaction of χ1 with matter. We dis-
tinguish three possibilities involving Z-exchange, s-quark exchange and Higgs
exchange.

3.3 The Feynman Diagrams Entering
the Direct Detection of LSP

The diagrams involve Z-exchange, s-quark exchange and Higgs exchange.
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3.3.1 The Z-exchange Contribution

This can arise from the interaction of Higgsinos with Z (see Fig. 3.1) which
can be read from C86 of [13]

L =
g

cosθW

1
4
[H̃1RγμH̃1R− H̃1LγμH̃1L− (H̃2RγμH̃2R− H̃2LγμH̃2L)]Zμ (3.4)

Using (3.2) and the fact that for Majorana particles χ̄γμχ = 0, we obtain

L =
g

cosθW

1
4
(|C31|2 − |C41|2)χ̄1γμγ5χ1Z

μ , (3.5)

which leads to the effective 4-fermion interaction

Leff =
g

cosθW

1
4
2(|C31|2 − |C41|2)(−

g

2cosθW
1

q2 −m2
Z

χ̄1γ
μγ5χ1)JZμ , (3.6)

where the extra factor of 2 comes from the Majorana nature of χ1. The neutral
hadronic current JZλ is given by

JZλ = −q̄γλ{
1
3
sin2θW −

[ 1
2
(1− γ5)− sin2θW

]
τ3}q (3.7)

at the nucleon level it can be written as

J̃Zλ = −N̄γλ{ sin2θW − gV (
1
2
− sin2θW )τ3 +

1
2
gAγ5τ3}N . (3.8)

Thus we can write

Leff = −GF√
2

(χ̄1γ
λγ5χ1)Jλ(Z) , (3.9)

where

Jλ(Z) = N̄γλ[f0
V (Z) + f1

V (Z)τ3 + f0
A(Z)γ5 + f1

A(Z)γ5τ3]N (3.10)

and

χ
1

χ
1

χ
1

χ
1

γ
λ
γ

5

γ
λ
γ

5

q

q

Z0

J 
λ(z) Jλ(z)

N

N

∼

Fig. 3.1. The LSP-quark interaction mediated by Z-exchange
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f0
V (Z) = 2(|C31|2 − |C41|2)

m2
Z

m2
Z − q2

sin2θW , (3.11)

f1
V (Z) = −2(|C31|2 − |C41|2)

m2
Z

m2
Z − q2

gV (
1
2
− sin2θW ) , (3.12)

f0
A(Z) = 0 , f1

A(Z) = 2(|C31|2 − |C41|2)
m2
Z

m2
Z − q2

1
2
gA , (3.13)

with gV = 1.0 and gA = 1.24. We can easily see that

f1
V (Z)/f0

V (Z) = −gV (
1

2sin2θW
− 1) � −1.15 . (3.14)

Note that the suppression of this Z-exchange interaction compared to the
ordinary neutral current interactions arises from the smallness of the mixing
C31 and C41, a consequence of the fact that the Higgsinos are normally quite a
bit heavier than the gauginos. Furthermore, the two Higgsinos tend to cancel
each other.

We should also mention that the vector contribution, the time component
of which can lead to coherence, contributes only to order υ/c ≈ 10−3 due to
the Majorana nature of the LSP. Thus to leading order only the axial current
can contribute to the direct detection of the neutralino.

3.3.2 The S-quark Mediated Interaction

The other interesting possibility arises from the other two components of χ1,
namely B̃ and W̃3. Their corresponding couplings to s-quarks (see Fig. 3.2)
can be read from the appendix C4 of [13] They are

Leff = −g
√

2{q̄L[T3W̃3R − tanθW (T3 −Q)B̃R]q̃L
−tanθW q̄RQB̃Lq̃R}+ HC , (3.15)

where q̃ are the scalar quarks (SUSY partners of quarks). A summation over
all quark flavors is understood. Using (3.2) we can write the above equation
in the χi basis. Of interest to us here is the part

Leff = g
√

2{(tanθW (T3 −Q)CR
11 − T3C

R
21)q̃Lχ1Rq̃L

+tanθWC11Qq̄Rχ1Lq̃R} . (3.16)

The above interaction is almost diagonal in the quark flavor. There exists,
however, mixing between the s-quarks q̃L and q̃R (of the same flavor) i.e.

q̃L = cosθq̃q̃1 + sinθq̃q̃2, q̃R = −sinθq̃q̃1 + cosθq̃q̃2 (3.17)

with

tan2θũ =
mu(A + μcotβ)

m2
uL
−m2

ũR
+ m2

zcos2β/2
, tan2θd̃ =

md(A + μtanβ)
m2
dR
−m2

d̃R
+ m2

Zcos2β/2
.

(3.18)
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Fig. 3.2. The LSP-quark interaction mediated by s-quark exchange

Thus (3.16) becomes

Leff = g
√

2 {[BLcosθq̃ q̄Lχ1R −BRsinθq̃q̄Rχ1L]q̃1

+[BLsinθq̃q̄Lχ1R + BRcosθq̃q̄Rχ1L] q̃2}

with

BL(q) = − 1
6C

R
11tanθω − 1

2C
R
21, q = u (charge 2/3) ,

BL(q) = − 1
6C

R
11tanθω + 1

2C
R
21, q = d (charge − 1/3) ,

BR(q) = 2
3 tanθωC11, q = u (charge 2/3) ,

BR(q) = − 1
3 tanθωC11, q = d (charge − 1/3) .

The effective four fermion interaction takes the form

Leff = (g
√

2)2{(BLcosθq̃ q̄Lχ1R −BRsinθq̃q̄Rχ1L)
1

q2 −mq̃21

(BLcosθqχ̄1RqL −BRsinθq̃χ̄1LqR)

+(BLsinθqqLχ1R + cosθq̃ q̄Rχ1L)
1

q2 −mq̃22

(BLsinθqχ̄1RqL + BRcosθq̃χ̄1LqR)} . (3.19)

The above effective interaction can be written as

Leff = LLL+RR
eff + LLReff . (3.20)

The first term involves quarks of the same chirality and is not much effected
by the mixing (provided that it is small). The second term involves quarks of
opposite chirality and is proportional to the s-quark mixing.
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The Part LLL+RR
eff

Employing a Fierz transformation LLL+RR
eff can be cast in the more convenient

form

LLL+RR
eff = (g

√
2)22(−1

2
){|BL|2

(
cos2θq̃

q2 −mq̃21

+
sin2θq̃

q2 −mq̃22

)q̄LγλqLχ1Rγ
λχ1R

+|BR|2(
sin2θq̃

q2 −mq̃21

+
cos2θq̃

q2 −mq̃22

)q̄RγλqRχ1Lγ
λχ1L} . (3.21)

The factor of 2 comes from the Majorana nature of LSP and the (-1/2) comes
from the Fierz transformation. Equation (3.21) can be written more com-
pactly as

Leff = −GF√
2

2{q̄γλ(β0R + β3Rτ3)(1 + γ5)q

− q̄γλ(β0L + β3Lτ3)(1 − γ5)q}(χ̄1γ
λγ5χ1} , (3.22)

with

β0R =
(4

9
χ2
ũR

+
1
9
χ2
d̃R

)
|C11tanθW |2 ,

β3R =
(4

9
χ2
ũR
− 1

9
χ2
d̃R

)
|C11tanθW |2 , (3.23)

β0L = |1
6
CR

11tanθW +
1
2
CR

21|2χ2
ũL

+ |1
6
CR

11tanθW −
1
2
CR

21|2χ2
d̃L

,

β3L = |1
6
CR

11tanθW +
1
2
CR

21|2χ2
ũL
− |1

6
CR

11tanθW −
1
2
CR

21|2χ2
d̃L

,

with

χ2
qL = c2q̃

m2
W

mq̃21
− q2

+s2
q̃

m2
W

mq̃22
− q2

, χ2
qR = s2

q̃

m2
W

mq̃21
− q2

+c2q̃
m2
W

mq̃22
− q2

, (3.24)

where cq̃ = cosθq̃, sq̃ = sinθq̃. The above parameters are functions of the
four-momentum transfer which in our case is negligible.
Equation (3.22) can be explicitly rewritten [30] as:

Leff = −GF√
2

2
[
ūγλ(d0(u) + γ5d(u))u + d̄γλ(d0(d) + γ5d(d))d

]
(χ̄1γ

λγ5χ1)

(3.25)
where

d0(u) = β0R + β3R − β0L − β3L, d(u) = β0R + β3R + β0L + β3L , (3.26)
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d0(d) = β0R − β3R − β0L + β3L, d(u) = β0R − β3R + β0L − β3L . (3.27)

Proceeding as in Sect. 3.3.1 we can obtain the effective Lagrangian at the
nucleon level as

LLL+RR
eff = −GF√

2
(χ̄1γ

λγ5χ1)Jλ(q̃) , (3.28)

Jλ(q̃) = N̄γλ{f0
V (q̃) + f1

V (q̃)τ3 + f0
A(q̃)γ5 + f1

A(q̃)γ5τ3)N , (3.29)

with

f0
V = 6(β0R − β0L) , f1

V = 2gV (β3R − β3L)
f0
A = 2g0

A(β0R + β0L) , f1
A = 2gA(β3R + β3L) (3.30)

with gv = 1.0 and gA = 1.25. The quantity g0
A depends on the quark model

for the nucleon. It can be anywhere between 0.12 and 1.00 (see below 3.4.2).
We should note that this interaction is more suppressed than the ordinary

weak interaction by the fact that the masses of the s-quarks are usually larger
than that of the gauge boson Z0. In the limit in which the LSP is a pure bino
(C11 = 1, C21 = 0) we obtain

β0R = tan2θW

(4
9
χ2
uR

+
1
9
χ2
d̃R

)
, β3R = tan2θW

(4
9
χ2
uR
− 1

9
χ2
d̃R

)
, (3.31)

β0L =
tan2θW

36
(χ2
ũL

+ χ2
d̃L

) , β3L =
tan2θW

36
(χ2
ũL
− χ2

d̃L
) . (3.32)

Assuming further that χũR = χd̃R
= χũL = χd̃L

we obtain

f1
V (q̃)/f0

V (q̃) � +
2
9
, f1

A(q̃)/f0
A(q̃) � +

6
11

. (3.33)

If, on the other hand, the LSP were the photino (C11 = cosθW , C21 =
sinθW , C31 = C41 = 0) and the s-quarks were degenerate there would be
no coherent contribution (f0

V = 0 if β0L = β0R).
As we have mentioned in the previous section, to leading order, only the

axial current contributes to the direct detection of the neutralino.

The Part LLR
eff

From (3.19) we obtain

LLReff = −(g
√

2)2sin2θq̃BL(q)BR(q)
1
2
[

1
q2 −mq̃21

− 1
q2 −mq̃22

] (3.34)

(q̄Lχ1Rχ̄1LqR + q̄Rχ1Lχ̄1RqL) .

Employing a Fierz transformation we can cast it in the form
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Leff = −GF√
2

∑
q

β(q) [(q̄qχ̄1χ1 + q̄γ5qχ̄1γ5χ1 − (q̄σμνq)(χ̄1σ
μνχ1))] ,

(3.35)
where

β(u) =
2
3
tanθWC11{2sin2θũ[

1
6
CR11tanθW +

1
2
CR21]Δũ , (3.36)

β(d) = sin2θd̃[
1
6
CR11tanθW −

1
2
CR

21]Δd̃} . (3.37)

Where in the last expressions u indicates quarks with charge 2/3 and d quarks
with charge -1/3. In all cases

Δũ =
(m2

ũ1
−m2

ũ2
)M2

W

(m2
ũ1

−q2)(m2
ũ2

−q2)

and an analogous equation for Δd̃.
The appearance of scalar terms in s-quark exchange [22] has been first

noticed by Griest [19]. It has also been noticed there that one should consider
explicitly the effects of quarks other than u and d [41] in going from the quark
to the nucleon level. We first notice that with the exception of t s-quark the
q̃L − q̃R mixing small. Thus

sin2θũΔũ � 2mu(A + μcotβ)m2
W

(m2
ũL
− q2)(m2

ũR
− q2)

, sin2θd̃Δd̃ � 2md(A + μtanβ)m2
W

(m2
d̃L
− q2)(m2

d̃R
− q2)

.

(3.38)
In going to the nucleon level and ignoring the negligible pseudoscalar and
tensor components we only need modify the above expressions for all quarks,
with the possible exception of the t quarks, by the substitution mq → fqmN

(see Sect. 3.4.1). For the t s-quark the mixing is complete, which implies that
the amplitude is independent of the top quark mass. Hence in the case of the
top quark we may not get an extra enhancement in going from the quark to
the nucleon level. In any case this way we get

Leff =
GF√

2
[f0
S(q̃)N̄N + f1

S(q̃)N̄τ3N ]χ̄1χ1 (3.39)

with
f0
S(q̃) =

fuβ(u) + fdβ(d)
2

+
∑

q=s,c,b,t

fqβ(q) , (3.40)

f1
S(q̃) =

fuβ(u)− fdβ(d)
2

. (3.41)

(see Sect. 3.4.1 for details). In the allowed SUSY parameter space considered
in this work this contribution can be neglected in front of the Higgs exchange
contribution. This happens because for quarks other than t the s-quark mixing
is small. For the t-quark, as it has already been mentioned, we have large
mixing, but we do not get the advantage of the mass enhancement.
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3.3.3 The Intermediate Higgs Contribution

The coherent scattering can be mediated via the intermediate Higgs particles
which survive as physical particles (see Fig. 3.3). The relevant interaction can
arise out of the Higgs-Higgsino-gaugino interaction which takes the form

LHχχ =
g√
2

(
¯̃W

3

RH̃2LH
0∗
2 −

¯̃W
3

RH̃1LH
0∗
1

−tanθw( ¯̃BRH̃2LH
0∗
2 −

¯̃BRH̃1LH
0∗
1 )
)

+ H.C. (3.42)

Proceeding as above we can express W̃ an B̃ in terms of the appropriate
eigenstates and retain the LSP to obtain

L =
g√
2

(
(CR

21 − tanθwC
R
11)C41χ̄1Rχ1LH

o∗
2

−(CR
21 − tanθwC

R
11)C31χ̄1Rχ1LH

o∗
1

)
+ H.C . (3.43)

We can now proceed further and express the fields H0
1
∗, H0

2
∗ in terms

of the physical fields h, H and A. The term which contains A will be ne-
glected, since it yields only a pseudoscalar coupling which does not lead to
coherence.

Thus we can write

Leff = −GF√
2
χ̄χ N̄ [f0

s (H) + f1
s (H)τ3]N (3.44)

χ
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χ
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Fig. 3.3. The LSP-quark interaction mediated by Higgs exchange
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where

f0
S(H) =

1
2
(gu + gd) + gs + gc + gb + gt , (3.45)

f1
S(H) =

1
2
(gu − gd) , (3.46)

with

gai =
[
g1(h)

cosα

sinβ
+ g2(H)

sinα

sinβ

]mai

mN
, ai = u, c, t (3.47)

gκi =
[
− g1(h)

sinα

cosβ
+ g2(H)

cosα

cosβ

]mκi

mN
, κi = d, s, b (3.48)

g1(h) = 4(CR
11tanθW − CR

21)(C41cosα + C31sinα)
mNmW

m2
h − q2

, (3.49)

g2(H) = 4(CR
11tanθW − CR

21)(C41sinα− C31cosα)
mNmW

m2
H − q2

, (3.50)

where mN is the nucleon mass, and the parameters mh, mH and α depend
on the SUSY parameter space (see Table 1).

3.4 Going from the Quark to the Nucleon Level

As we have already mentioned, one has to be a bit more careful in handling
quarks other than u and d.

3.4.1 The Scalar Interaction

As we have seen the scalar couplings of the LSP to the quarks are proportional
to their mass [41]. One encounters in the nucleon not only sea quarks (uū, dd̄
and ss̄) but the heavier quarks also due to QCD effects [42]. This way one
obtains the scalar Higgs-nucleon coupling by using effective parameters fq
defined as follows: 〈

N |mqq̄q|N
〉

= fqmN , (3.51)

where mN is the nucleon mass. The parameters fq, q = u, d, s can be ob-
tained by chiral symmetry breaking terms in relation to phase shift and dis-
persion analysis. The isoscalar component can be obtained by considering the
following quantities:

1. The phenomenologically determined mass ratios:

mu

md
= 0.553± 0.043,

ms

md
= 18.9± 0.08 . (3.52)
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2. The quantities:

z =
Bu −Bs
Bd −Bs

≈ 1.49, y =
2Bs

Bd + Bu
. (3.53)

One then finds that:

Bu
Bd

=
2z − (z − 1)y
2 + (z − 1)y

for protons ,
Bu
Bd

=
2 + (z − 1)y
2z − (z − 1)y

for neutrons

(3.54)
with Bq =< N |q̄q|N >.

3. The pion-nucleon sigma-term, σπN :
this term is obtained from the isospin even π-N scattering amplitude with
vanishing external momenta. It is defined by the scalar quark density
operator averaged over the nucleon or equivalently by σπN (t = 0), the
scalar form factor of the nucleon at zero momentum transfer squared. The
value of the sigma term is deduced from the analysis of two quantities:
σπN (t = 2M2

π) the scalar form factor at the Cheng-Dashen point, which is
experimentally accessible, and the difference Δσ = σπN (2M2

π)−σπN (0) =
15.2± 0.4 MeV [60, 61] as induced by explicit chiral symmetry breaking.
Experimentally, after efforts of many years, the value of the sigma-tern is
still quite uncertain [61]. The canonical value of the πN sigma term with

σπN =
mu + md

2
(Bu + Bd) = (45± 8) MeV (3.55)

is deduced from an earlier analyses with σπN (t = 2M2
π) = 60 ± 8 [60].

During the last few years analyses of also more recent pion-nucleon scat-
tering data lead to an increase in the value of scalar form factor at the
Cheng-Dashen point σπN (M2

π) with 88 ± 15 MeV [62], 71 ± 9 MeV [63],
79±7 MeV [64] and (80−90) MeV [65]. Thus the recent analyses suggest
a value for the pion-nucleon sigma term of about

σπN =
mu + md

2
(Bu + Bd) = (56− 75) MeV . (3.56)

4. Theoretical analysis of the σπN term:
In the context of chiral perturbation one can show that:

σπN =
σ0

1− y
, σ0 = (35± 5) MeV . (3.57)

Equations (3.55) and (3.56) together with (3.57) will provide the range of
variation in the parameter y. Taking:

mu = 5.1 MeV, md = 9.3 MeV (3.58)

together with y will in turn provide by (3.54) the range of variation of
the ratio Bu/Bd. The uncertainties in (3.55, 3.56, 3.57) provide a wide
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range in which the parameter y can vary. In other words the experimental
and theoretical uncertainties permit us, we will exploit the possible con-
sequences of variation in y to SUSY dark matter detection. For σπN we
choose 45, 55, 65 and 75 MeV to reflect the range of values set by (3.55)
and (3.56). Thus from (3.57) we extract the corresponding y parameters
with 0.22 ± 0.11, 0.36 ± 0.09, 046 ± 0.08 and 0.53 ± 0.07, respectively.
Then we will combine these values with (3.54) to get the desired values
of fq given below.

From the above analysis we get in the case of the proton:

fpd =
ΣπN

0.756 mp
[1 +

2z − (z − 1)y
2 + (z − 1)y

]−1 , (3.59)

fpu = 0.553 fpd [
2z − (z − 1)y
2 + (z − 1)y

], fps =
ΣπN

0.756 mp

19
2

y , (3.60)

fps =
ΣπN

0.756 mp

19
2

y . (3.61)

In the case of the neutron our expressions are analogous, the ratio Bu/Bd
getting the inverse value.

For the heavy quarks, to leading order via quark loops and gluon exchange
with the nucleon, one finds:

fQ = 2/27(1−
∑
q fq).

There is a correction to the above parameters coming from loops involving
s-quarks [42]. The leading contribution can be absorbed into the definition, if
the functions g1(h) and g2(H) as follows:

g1(h)→ g1(h)[1 + 1
8 (2m

2
Q

m2
W
− sin(α+β)

cos2θW

sinβ
cosα )] ,

g2(H)→ g1(h)[1 + 1
8 (2m

2
Q

m2
W

+ cos(α+β)
cos2θW

sinβ
sinα )] ,

for Q = c and t For the b-quark we get:

g1(h)→ g1(h)[1 + 1
8 (2 m2

b

m2
W
− sin(α+β)

cos2θW

cosβ
cosα )] ,

g2(H)→ g1(h)[1 + 1
8 (2 m2

b

m2
W
− cos(α+β)

cos2θW

cosβ
sinα )] .

In addition to the above effects one has to consider QCD effects. These effects
renormalize the contribution of the quark loops as follows [42]:

fQCD(q) = 1
4

β(αs)
1+γm(αs)

with

β(αs) = αs

3π [1 + 19
4 αsπ] , γm(αs) = 2αs

π .
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Thus

fQCD(q) = 1 + 11
4
αs

π .

The QCD correction associated with the s-quark loops is:

fQCD(q̃) = 1 + 25
6
αs

π .

The above corrections depend on Q since αs must be evaluated at the scale
of mQ.

It convenient to introduce the factorfQCD(q̃)/fQCD(q) into the factors
g1(h) and g2(H) and the factor of fQCD(q) into the the quantities fQ. If,
however, one restricts oneself to the large tanβ regime, the corrections due to
the s-quark loops is independent of the parameters α and β and significant
only for the t-quark.

For a more detailed discussion we refer the reader to [41, 42]. We thus
obtain the results presented in Table 3.1.

We notice that there exist differences between the proton and neutron com-
ponents. These, however, cannot be taken as the sole contribution to isovector
contribution, since all quantities were derived with isoscalar operators. So the
isovector contribution will be discussed elsewhere. Here we will limit ourselves
to the isoscalar component fq = (fpq + fnq )/2.

3.4.2 The Axial Current Contribution

The amplitudes ap = f0
A + f1

A and an = f0
A − f1

A are defined by [66]:

aN =
∑

q=u,d,s

dqΔqN , (3.62)

2sμΔqN = 〈N |q̄γμγ5q|N〉 , (3.63)

Table 3.1. The parameters fp
q and fp

Q (upper part) as well as fn
q and fn

Q (lower
part) for the twelve cases discussed in the text

# fp
d fp

u fp
s fp

c fp
b fp

t fn
d fn

u fn
s fn

c fn
b fn

t

1 0.026 0.021 0.067 0.098 0.104 0.161 0.037 0.014 0.066 0.098 0.104 0.161
2 0.027 0.020 0.133 0.087 0.092 0.144 0.037 0.015 0.133 0.086 0.092 0.143
3 0.028 0.020 0.199 0.075 0.080 0.126 0.036 0.015 0.199 0.075 0.080 0.126
4 0.033 0.025 0.199 0.078 0.083 0.132 0.044 0.018 0.199 0.077 0.083 0.122
5 0.034 0.024 0.265 0.068 0.072 0.117 0.044 0.019 0.265 0.067 0.172 0.117
6 0.031 0.025 0.332 0.057 0.061 0.106 0.043 0.017 0.332 0.057 0.062 0.102
7 0.040 0.028 0.331 0.061 0.065 0.109 0.051 0.022 0.331 0.060 0.065 0.109
8 0.041 0.028 0.400 0.051 0.055 0.095 0.051 0.023 0.400 0.050 0.055 0.095
9 0.047 0.028 0.470 0.041 0.047 0.081 0.051 0.023 0.400 0.050 0.055 0.095

10 0.047 0.027 0.462 0.045 0.050 0.090 0.050 0.023 0.470 0.040 0.044 0.060
11 0.048 0.032 0.532 0.036 0.040 0.076 0.058 0.027 0.532 0.035 0.040 0.076
12 0.049 0.032 0.603 0.026 0.030 0.063 0.057 0.027 0.603 0.026 0.030 0.063
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where sμ is the nucleon spin and dq the relevant spin amplitudes at the quark
level obtained in a given SUSY model.

The isoscalar and the isovector axial current couplings at the nucleon level,
f0
A, f1

A, are obtained from the corresponding ones given by the SUSY models
at the quark level, f0

A(q), f1
A(q), via renormalization coefficients g0

A, g1
A, i.e.

f0
A = g0

Af
0
A(q), f1

A = g1
Af

1
A(q). The renormalization coefficients are given terms

of Δq defined above [66], via the relations

g0
A = Δu + Δd + Δs = 0.77− 0.49− 0.15 = 0.13 , g1

A = Δu −Δd = 1.26.

We see that, barring very unusual circumstances at the quark level, the
isoscalar contribution is negligible. It is for this reason that one might prefer
to work in the isospin basis.

3.5 The Nucleon Cross Sections

With the above ingredients we are in a position to evaluate the nucleon cross
sections.

– The scalar cross section. As we have mentioned this is primarily due to
the Higgs exchange.

σSp,χ0 = σ0|f0
S + f1

S |2 , σSn,χ0 = σ0|f0
S − f1

S |2 (3.64)

with

σ0 =
1
2π

(GFmp)2 = 0.77× 10−38cm2 = 0.77× 10−2pb . (3.65)

Since, however, the process is dominated by quarks other than u and d,
the isovector contribution is negligible. So we can talk about the nucleon
cross section.

– The proton spin cross section is given by:

σspinp,χ0 = 3σ0|f0
A + f1

A|2 = 3σ0|ap|2 . (3.66)

3.6 The Allowed SUSY Parameter Space

It is clear from the above discussion that the nucleon cross section depends:

– The the quark structure of the nucleon
The allowed range of the parameters fq may induce variations in the
nucleon cross section as large as an order of magnitude.

– The parameters of supersymmetry.
This is the most crucial input. One starts with a set of parameters at
the GUT scale and predicts the low energy observable via the renormal-
ization group equations (RGE). Conversely starting from the low energy
phenomenology one can constrain the input parameters at the GUT scale.
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The parameter space is the most crucial. In SUSY models derived from min-
imal SUGRA the allowed parameter space is characterized at the GUT scale
by five parameters:

– two universal mass parameters, one for the scalars, m0, and one for the
fermions, m1/2.

– tanβ.
– The trilinear coupling A0 (or mpole

t ) and
– The sign of μ in the Higgs self-coupling μH1 H2.

The experimental constraints are

1. The LSP relic abundance (including co-annihilations):

0.09 ≤ ΩLSPh2 ≤ 0.22 (previous), 0.09 ≤ ΩLSPh2 ≤ 0.124 (WMAP).

2. the b→ sγ constraint (CLEO, BELLE)

2× 10−4 ≤ BR ≤ 4.1× 10−4 .

3. The Higgs mass: ≥ 114.1 GeV . This applies on the standard model
Higgs. So For SUSY one must correct for factor sin2 (α− β) where α is
the Higgs mixing angle. So this imposes limits on tanβ

4. Limits on gs − 2 (e−, e+) experiments (E821 at BNL)

aμ = (gμ − 2)/2 = (33.7± 11.2)× 10−10

yields (2σ level):

11.3× 10−10 ≤ δaμ(SUGRA) ≤ 56.1× 10−10

.
5. The fermion masses:

mt(pole) = 175 GeV , mb(mb) = 4.25 GeV ⇒
mb(mZ) = 2.888 GeV , mτ (MZ) = 1.7463 GeV .

We are not going to elaborate further on this interesting aspect, since this is
covered by A. Lahanas’ contribution.

3.7 Rates

The differential non directional rate can be written as

dRundir =
ρ(0)
mχ

m

AmN
dσ(u, υ)|υ| , (3.67)

where A is the nuclear mass number, ρ(0) ≈ 0.3GeV/cm3 is the LSP density
in our vicinity, m is the detector mass, mχ is the LSP mass and dσ(u, υ) is
the differential cross section.
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The directional differential rate, i.e. that obtained, if nuclei recoiling in
the direction ê are observed, is given by [26]:

dRdir =
ρ(0)
mχ

m

AmN
|υ|υ̂.ê Θ(υ̂ .ê)

1
2π

dσ(u, υ δ(
√

u

μrυ
√

2
− υ̂.ê) , (3.68)

where Θ(x) is the Heaviside function.
The differential cross section is given by:

dσ(u, υ) =
du

2(μrbυ)2
[(Σ̄SF (u)2 + Σ̄spinF11(u)] , (3.69)

where u the energy transfer Q in dimensionless units given by

u =
Q

Q0
, Q0 = [mpAb]−2 = 40A−4/3 MeV (3.70)

with b is the nuclear (harmonic oscillator) size parameter. F (u) is the nuclear
form factor and F11(u) is the spin response function associated with the isovec-
tor channel.

The scalar cross section is given by:

Σ̄S = (
μr

μr(p)
)2σSp,χ0A2

⎡
⎣1 + f1

S

f0
S

2Z−A
A

1 + f1
S

f0
S

⎤
⎦

2

≈ σSN,χ0(
μr

μr(p)
)2A2 (3.71)

(since the heavy quarks dominate the isovector contribution is negligible).
σSN,χ0 is the LSP-nucleon scalar cross section. The spin Cross section is
given by:

Σ̄spin = (
μr

μr(p)
)2σspinp,χ0 ζspin, ζspin =

1

3(1 + f0
A

f1
A

)2
S(u) , (3.72)

S(u) ≈ S(0) = [(
f0
A

f1
A

Ω0(0))2 + 2
f0
A

f1
A

Ω0(0)Ω1(0) + Ω1(0))2 ] . (3.73)

The couplings f1
A (f0

A) and the nuclear matrix elements Ω1(0) (Ω0(0)) associ-
ated with the isovector (isoscalar) components are normalized so that, in the
case of the proton at u = 0, they yield ζspin = 1.

With these definitions in the proton neutron representation we get:

ζspin =
1
3
S

′
(0) , (3.74)

S
′
(0) =

[
(
an
ap

Ωn(0))2 + 2
an
ap

Ωn(0)Ωp(0) + Ω2
p(0)

]
, (3.75)

where Ωp(0) and Ωn(0) are the proton and neutron components of the static
spin nuclear matrix elements. In extracting limits on the nucleon cross sections
from the data we will find it convenient to write:
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σspinp,χ0 ζspin =
Ω2
p(0)
3
|√σp +

Ωn

Ωp

√
σne

iδ|2 . (3.76)

In (3.76) δ the relative phase between the two amplitudes ap and an. The
static spin matrix elements are obtained in the context of a given nuclear
model. Some such matrix elements of interest to the planned experiments are
given in Table 3.2. The shown results are obtained from Divari [46], Ressel et
al. (*) [44], the Finish group (**) [51] and the Ioannina team (+) [22, 52].

The spin ME are defined as follows:

Ωp(0) =

√
J + 1

J
≺ J J |σz(p)|J J � , Ωn(0) =

√
J + 1

J
≺ J J |σz(n)|J J � .

(3.77)
where J is the total angular momentum of the nucleus and σz = 2Sz. The spin
operator is defined by Sz(p) =

∑Z
i=1 Sz(i), i.e. a sum over all protons in the

nucleus, and Sz(n) =
∑N
i=1 Sz(i), i.e. a sum over all neutrons. Furthermore

Ω0(0) = Ωp(0) + Ωn(0) , Ω1(0) = Ωp(0)−Ωn(0) . (3.78)

3.8 Expressions for the Rates

To obtain the total rates one must fold with LSP velocity distribution and
integrate the above expressions over the energy transfer from Qmin determined
by the detector energy cutoff to Qmax determined by the maximum LSP
velocity (escape velocity, put in by hand in the Maxwellian distribution), i.e.
υesc = 2.84 υ0 with υ0 the velocity of the sun around the center of the galaxy
(229 Km/s).

For a given velocity distribution f(υ′), with respect to the center of the
galaxy, one can find the velocity distribution in the Lab f(υ,υE) by writing
υ

′
= υ + υE , υE=υ0+ υ1, with υ 1 the Earth’s velocity around the sun.

Table 3.2. The static spin matrix elements for various nuclei. For 3He see Moulin,
Mayet and Santos [67, 68]. For the other light nuclei the calculations are from DI-
VARI [46]. For 73Ge and 127I the results presented are from Ressel et al. [44] (*)
and the Finish group et al. [51] (**). For 207Pb they were obtained by the Ioannina
team (+). [22, 52]

3 He 19F 29Si 23Na 73Ge 127I∗ 127I∗∗ 207Pb+

Ω0(0) 1.244 1.616 0.455 0.691 1.075 1.815 1.220 0.552
Ω1(0) −1.527 1.675 −0.461 0.588 −1.003 1.105 1.230 −0.480
Ωp(0) −0.141 1.646 −0.003 0.640 0.036 1.460 1.225 0.036
Ωn(0) 1.386 −0.030 0.459 0.051 1.040 0.355 −0.005 0.516
μth 2.91 −0.50 2.22
μexp 2.62 −0.56 2.22
μth(spin)

μexp
0.91 0.99 0.57
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It is convenient to choose a coordinate system so that x̂ is radially out in
the plane of the galaxy, ẑ in the sun’s direction of motion and ŷ = x̂× ẑ.

Since the axis of the ecliptic lies very close to the x, y plane (ω = 186.30)
only the angle γ = 29.80 (see Fig. 3.4) becomes relevant. Thus the velocity of
the earth around the sun is given by

υE = υ0ẑ + υ1( sinα x̂− cosα cosγ ŷ + cosα sinγ ẑ ) , (3.79)

where α is phase of the earth’s orbital motion. The LSP velocity distribution
f(υ′) is not known. Many velocity distributions are employed. In the present
work we will adopt the standard practice and assume it to be Gaussian:

f(υ′) =
1

(
√
πυ0)3

e−(υ′/υ0)2 . (3.80)

Since υ1 �υ0 we will ignore, for the moment, the motion of the Earth.
Then the total (non directional) rate is given by

R = R̄ t(a,Qmin) , (3.81)

R̄ =
ρ(0)
mχ0

m

Amp
(

μr
μr(p)

)2
√
〈v2〉[σSp,χ0 A2 + σspinp,χ0 ζspin] .

The SUSY parameters have been absorbed in R̄. The parameter t takes care
of the nuclear form factor and the folding with LSP velocity distribution

220 km/s

December

Vsun

Vearth
June

60°

Vll  = 15 km/s

30 km/s

Vll = 15 km/s

Fig. 3.4. The galactic plane is perpendicular to the paper containing the sun’s
velocity. The normal to the two planes form an angle γ

′
= π/2 − γ ≈ π/6. The

modulation is affected by the projection of the Earth’s velocity along the sun’s
velocity. Thus the velocity of the detector relative to the center of the galaxy is
220 + 15 = 235 km/s around June 3nd (when the maximum of the event rate is
expected) and 220 − 15 = 205 km/s around December 3 (minimum of the event
rate)
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[26, 37, 38, 69]. It depends on Qmin, i.e. the energy transfer cutoff imposed
by the detector and a = [μrbυ0

√
2]−1.

In the present work we find it convenient to re-write it as:

R = K̄
[
ccoh(A, μr(A))σSp,χ0 + cspin(A, μr(A))σspinp,χ0 ζspin

]
, (3.82)

where

K̄ =
ρ(0)

100 GeV
m

mp

√
〈v2〉 � 160 10−4 (pb)−1y−1 ρ(0)

0.3GeV cm−3

m

1Kg

√
〈v2〉

280kms−1

(3.83)
and

ccoh(A, μr(A)) =
100 GeV

mχ0

[
μr(A)
μr(p)

]2

A tcoh(A) , (3.84)

cspin(A, μr(A)) =
100GeV

mχ0

[
μr(A)
μr(p)

]2
tspin(A)

A
. (3.85)

The parameters ccoh(A, μr(A)), cspin(A, μr(A)), which give the relative merit
for the coherent and the spin contributions in the case of a nuclear target
compared to those of the proton, have already been tabulated [69] for energy
cutoff Qmin = 0, 10 keV.

Via (3.82) we can extract the nucleon cross section from the data (see
below).
Neglecting the isoscalar contribution and using Ω2

1 = 1.22 and Ω2
1 = 2.8 for

127I and 19F respectively the extracted nucleon cross sections satisfy:

σspinp,χ0

σSp,χ0

=
[
ccoh(A, μr(A))
cspin(A, μr(A))

]
3
Ω2

1

⇒≈ ×104 (A = 127), ≈ ×102 (A = 19)

(3.86)
It is for this reason that the limit on the spin nucleon cross section extracted
from both targets is much poorer.

The factors c19 = ccoh(19, μr(19)), s19 = cspin(19, μr(19)), c19 = ccoh
(73, μr(73)), s73 = cspin(73, μr(73)) and c127 = ccoh(127, μr(127)), s127 =
cspin(127, μr(127)) for two values of Qmin and s3 = cspin(3, μr(3)) for Qmin =
0 can be found elsewhere [69].

3.9 Bounds on the Scalar Proton Cross Section

Before proceeding with the analysis of the spin contribution we would like to
discuss the limits on the scalar proton cross section. In what follows we will
employ for all targets [70, 71, 72, 73, 74, 75, 76, 77] the limit of CDMS II
for the Ge target [73], i.e. < 2.3 events for an exposure of 52.5 Kg-d with a
threshold of 10 keV. This event rate is similar to that for other systems [71].
The thus obtained limits are exhibited in Fig. 3.5.
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Fig. 3.5. The limits on the scalar proton cross section for A= 127 on the left and
A= 73 on the right as functions of mχ. The continuous (dashed) curves correspond
to Qmin = 0 (10) keV respectively. Note that the advantage of the larger nuclear
mass number of the A= 127 system is counterbalanced by the favorable form factor
dependence of the A= 73 system

3.10 Exclusion Plots in the ap, an and σp, σn Planes

From the data one can extract a restricted region in the σp, σn plane, which
depends on the event rate and the LSP mass. Some such exclusion plots
have already appeared [71, 72]. One can plot the constraint imposed on the
quantities |ap + Ωn

Ωp
an| and|√σp + Ωn

Ωp

√
σne

iδ|2 derived from the experimental
limits via relations:

| √σp +
Ωn

Ωp

√
σn)eiδ|2 � σbound(A) r(mχ, A) , (3.87)

σbound(A) =
R

K̄

3
Ω2
p

10−5pb

c100spin(A, μr(A))
, r(mχ, A) =

c100spin(A, μr(A))
cspin(A, μr(A))

,

where δ is the phase difference between the two amplitudes and c100spin(A, μr(A))
is the value of cspin(A, μr(A)) evaluated for the LSP mass of 100 GeV. Fur-
thermore

|ap +
Ωn

Ωp
an| � abound(A) [r(mχ, A)]1/2 , abound(A) =

[
σbound(A)

3σ0

]1/2

.

(3.88)
The constraints will be obtained using the functions c100spin(A, μr(A)), obtained
without energy cut off, Qmin = 0, even though the experiments have energy
cut offs greater than zero. Furthermore even though we know of no model
such that eiδ is complex, for completeness we will examine below this case as
well. Such plots depend on the relative magnitude of the spin matrix elements.
They will be given in units of the A-dependent quantity σbound(A) for the nu-
cleon cross sections and the dimensionless quantity abound for the amplitudes
respectively. Before we proceed further we should mention that, if both pro-
tons and neutrons contribute, the standard exclusion plot, must be replaced
by a sequence of plots, one for each LSP mass or via three dimensional plots.
We found it is adequate to provide one such plot for a standard LSP mass,
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Fig. 3.6. The boundary in the ap, an plane extracted from the data for the target
127I is shown assuming that the amplitudes are relatively real. The scale depends
on the event rate and the LSP mass. Shown here is the scale for mχ = 100 GeV.
Note that the allowed region is confined when the amplitudes are of the same sign
(left plot), but they are not confined when the amplitudes are of opposite sign. The
allowed space now is i) The small triangle and ii) The space between the two parallel
lines and on the right of the line that intercepts them. We also indicate by a dot
the point ap = −an favored by the spin structure of the nucleon. The nuclear ME
employed were those of Ressel and Dean (see Table 3.2)

e.g. 100 GeV, and zero energy threshold. The interested reader can find the
scale for any other case in work already published [69]. The situation is ex-
hibited in Figs. 3.6–3.8 in the interesting case of the A=127 system using the
nuclear matrix elements of Ressel et al. given in Table 3.2. For other targets
we refer to the literature [69].

One can understand the asymmetry in the plot due to the fact that Ωp is
much larger than Ωn. In other words if σp happens to be very small a large σn
will be required to accommodate the data. In the example considered here,
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Fig. 3.7. The same as in Fig. 3.6 for the σp, σn plane. On the left the allowed
region is that below the curve (the amplitudes are relatively real and have the same
sign). In the plots on the right the amplitudes are relatively real and of opposite
sign. The allowed region is i) between the higher segment of the hyperbola and the
straight line and ii) Between the straight line and the lower segment of the curve
are The nuclear ME employed were those of Ressel and Dean (see Table 3.2)



92 J. Vergados

0.2 0.4 0.6 0.8 1

1

2

3

4

σ n
5.

0
→

pb
× 1

0–
3

σp 5.0→ pb×10–3

Fig. 3.8. The same as in Fig. 3.7 assuming that the amplitudes are not relatively
real, but are characterized by a phase difference δ. The allowed space is now confined.
The results shown for the thin solid, thick solid and dashed curves correspond to
δ = π/3, π/6 and π/2 respectively

however, the extreme values differ only by 20% from the values on the axes,
which arise, if one assumes that one mechanism at a time (proton or neutron)
dominates.

3.11 The Modulation Effect

As we have mentioned the expected event rate is so low that, even if one goes
underground, the background is formidable. Especially since the signal com-
ing from the detection of the energy energy of the recoiling nucleus has the
same shape as that of the background. One, therefore, looks for specific signa-
tures associated with the reaction. Since the event rate depends on the relative
velocity between the LSP and the target, a periodic seasonal dependence is ex-
pected due to the motion of the Earth around the sun. What counts is the the
is the projection of the velocity of the earth on the sun’s velocity (see Fig. 3.4).

If the effects of the motion of the Earth around the sun are included, the
total non directional rate is given by

R = K̄
[
ccoh(A, μr(A))σSp,χ0 (1 + h(a,Qmin)cosα)

]
(3.89)

and an analogous one for the spin contribution. h is the modulation amplitude,
which is quite small, less than 2% and it depends on the velocity distribution,
the nuclear form factor and, for a given target, on the LSP mass. α is the phase
of the Earth, which is zero around June 2nd. In the case of the target 127I
the modulation amplitude is shown in Fig. 3.9. We see that the modulation
amplitude is small, especially for Qmin = 0. Furthermore its sign is uncertain,



3 On the Direct Detection of Dark Matter 93

50 100 150 200 250 300

-0.015

-0.01

-0.005

0.005

0.01

0.015
h

→

50 100 150 200 250 300

0.02

0.04

0.06

0.08

0.1

0.12

h
→

mχ → (GeV )

Fig. 3.9. The modulation amplitude h as a function of the LSP mass in the case of
127I for Qmin = 0 on the left and Qmin = 10 keV on the right. We should mention
that the average LSP energy for an LSP mass mχ = 100 GeV is 
 40 keV. For the
definitions see text

since it depends on the LSP mass. The modulation amplitude increases as the
threshold cut off energy increases, but, unfortunately, this occurs at the ex-
pense of the total number of counts. Furthermore many experimentalists worry
that there are may be seasonal variations in the relevant backgrounds as well.

3.12 Transitions to Excited States

As we have mentioned the average neutralino energy scales with its mass. It is
� 40 keV for mχ = 100 GeV. Thus the neutralino energy is not high enough
to excite the nucleus. In some rare cases involving odd mass nuclei there exist
excited states at low energies, which can be populated in the LSP-nucleus
collision due to the high velocity tail of the neutralino velocity distribution
(see Fig. 3.10). From an experimental point of view this is very interesting [49],
since the signature of the γ−ray emission following the nuclear de-excitation
is much easier than nuclear recoils. An interesting target is 127I, which has an
excited state at � 50 keV. It has recently been found [50] that the branching
ratio to this excited state is appreciable from an experimental point of view.

3.13 The Directional Rates

As we have already mentioned one may attempt to measure not only the en-
ergy of the recoiling nucleus, but observe its direction of recoil. Admittedly
such experiments are quite hard [48], but they are expected to provide un-
ambiguous signature against background rejection. Since the sun is moving
around the galaxy in a directional experiment, i.e. one in which the direction
of the recoiling nucleus is observed, one expects a strong correlation of the
event rate with the motion of the sun [26]. In fact the directional rate can be
written as:



94 J. Vergados

B
R

R
→

100 150 200 250 300

0.009

0.011

0.012

0.013

0.014

0.015

B
R

R
→

100 150 200 250 300

0.02

0.04

0.06

0.08

0.1

0.12

mχ → (GeV )

Fig. 3.10. The ratio of the rate to the excited state divided by that of the ground
state as a function of the LSP mass (in GeV) for 127I . It was found that the static
spin matrix element of the transition from the ground to the excited state is a factor
of 1.9 larger than that involving the ground state. The spin response functions F11(u)
were assumed to be the same. On the left we show the results for Qmin = 0 and
on the right for Qmin = 10 KeV . In the last case, due to the detector energy cut,
off the denominator (recoil rate) is reduced, while the numerator (the rate to the
excited state) is not affected

Rdir =
κ

2π
R̄ t [1 + hmcos(α− αm π)] , (3.90)

where hm is the modulation and αm is the “shift” in the phase of the Earth
α, since now the maximum occurs at α = αmπ. κ/(2π) is the reduction factor
of the unmodulated directional rate relative to the non-directional one. The
parameters κ, hm, αm depend on the direction of observation:

ê = (sinΘ cosΦ, sinΘ sinΦ, cosΘ).

The parameter κt for a typical LSP mass 100 GeV is shown in Fig. 3.11
as a function of the angle Θ for the targets A = 19 and A = 127. We see
that the change of the rate as a function of the angle Θ for the Maxwellian
LSP velocity distribution is quite dramatic. This figure is important in the
analysis of the angular correlations, since, among other things, there is always
un uncertainty in the determination of the angle in a directional experiment.
We prefer to use the parameters κ and hm, since, being ratios, are expected to
be less dependent on the parameters of the theory. We exhibit the dependence
of the parameters t, h, κ, hm, and αm, which are essentially independent of
the LSP mass for target A = 19, in Table 3.3 (for the other light systems the
results are almost identical).

The asymmetry is quite large. For a Gaussian velocity distribution we find:

As =
R(−z)−R(+z)
R(−z) + R(+z)

≈ 0.97 .

In the other directions it depends on the phase of the Earth and is equal
to almost twice the modulation. For a heavier nucleus the situation is a bit
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Fig. 3.11. The quantity κt as a function of the angle Θ, the polar angle from the
sun’s direction of motion, for A = 19 on the left and A = 127 on the right. The
results presented correspond to an LSP mass of 100 GeV

complicated. Now the parameters κ and hm depend on the LSP mass [26].
It is clear that, if such experiments will ever be performed, such signatures
cannot be mimicked by background events.

Table 3.3. The parameters t, h, κ, hm and αm for the isotropic Gaussian velocity
distribution and Qmin = 0. The results presented are associated with the spin
contribution, but those for the coherent mode are similar. The results shown are
for the light systems. For intermediate and heavy nuclei there is a dependence on
the LSP mass. +x is radially out of the galaxy (Θ = π/2, Φ = 0), +z is in the
sun’s direction of motion (Θ = 0) and +y is vertical to the plane of the galaxy
(Θ = π/2, Φ = π/2) so that (x, y, z) is right-handed. αm = 0, 1/2, 1, 3/2 means
that the maximum occurs on the 2nd of June, September, December and March
respectively

type t h dir κ hm αm

+z 0.0068 0.227 1
dir +(-)x 0.080 0.272 3/2(1/2)

+(-)y 0.080 0.210 0 (1)
-z 0.395 0.060 0

all 1.00
all 0.02
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3.14 Observation of Electrons Produced During
the LSP-nucleus Collisions

Since the detection of recoiling nuclei is quite hard one may look for other
events. One such possibility is the observation of ionization electrons produced
directly during the LSP nuclear collisions [57, 58]. Due to the properties of
the bound electron wf, the event rate peaks at very low electron energies.
One therefore must be able to achieve very low energy thresholds. In order to
avoid uncertainties arising from the constraint SUSY parameter space we have
opted to present the ratio of the event rate for producing electrons divided by
the standard coherent recoil rate. This ratio is exhibited as a function of the
electron threshold energy in Fig. 3.12. We see that for large atomic number Z
and sufficiently low threshold energy this ratio may exceed unity.

It has also been found that inner 1s electrons can be ejected with a non
negligible probability [59]. The produced electron holes can be filled via the
Auger process or a sizable fraction can proceed via very hard (32 keV) X-
ray emission. The detection of such X-rays, in or without coincidence with
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Fig. 3.12. On the left we show the differential rate for ionization electrons, divided
by the total rate associated with the nuclear recoils, as a function of the electron
energy T (in keV) for various atoms. On the right we show the total rate for pro-
ducing electrons divided by the corresponding rate for nuclear recoil as a function
of the threshold energy. The event rate is per atom, i.e. all electrons in the atom
have been considered. The results exhibited were obtained for a typical LSP mass
mχ = 100 GeV
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nuclear recoils, will provide a signature very hard to miss, if SUSY allows for
detectable recoil rates.

3.15 Conclusions

In this review we have dealt with various issues involving the direct detection
of supersymmetric dark matter. The standard experiments employ various
techniques of measuring the energy of the recoiling nuclei after their elastic
scattering with the dark matter candidates. We have seen that the evaluation
of the event rates involves a number of issues: 1) A supersymmetric model
with a number of parameters, which at present can only be constrained from
laboratory data at low energies as well as cosmological observations. 2) The
dependence of the nucleon cross section on quarks other than u and d. 3) A
proper nuclear model, which involves the nuclear form factor in the case of
the the scalar interaction and the spin response function for the axial cur-
rent. 4) Information about the density and the velocity distribution of the
neutralino (halo model).

Using the present experimental limits on the event rate and suitable inputs
in 3)-4) we have derived constraints in the nucleon cross sections. Since the
obtained event rates are extremely low, we have examined some additional
signatures inherent in the neutralino nucleus interaction, such as the periodic
behavior of the rates due to the motion of Earth (modulation effect). Since,
unfortunately, this is characterized by a small amplitude, we were lead to ex-
amine the possibility of directional experiments. Tese, in addition to the recoil
energy, will also attempt to measure the direction of the recoiling nuclei. The
event rate in a given direction is ∼ 6π smaller than that of the standard ex-
periments, but one maybe able to exploit two novel characteristic signatures:
a) large asymmetries and b) interesting modulation patterns.

Proceeding further we extended our study to include evaluation of the
rates for other than recoil searches such as: i) Transitions to excited states
and the observation of de-excitation γ rays, ii) detection of the recoiling elec-
trons produced during the neutralino-nucleus collision and iii) observation of
hard X-rays, following the de-excitation of the ionized atom.

With all the above signatures one hopes that, if the supersymmetric mod-
els do not conspire to lead to large suppression of the amplitudes, the direct
direction of dark matter may soon follow.
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Abstract. The challenge of dark matter may be addressed in two ways; by studying
the confrontation of structure formation with observation and by direct and indi-
rect searches. In this review, I will focus on those aspects of dark matter that are
relevant for understanding galaxy formation, and describe the outlook for detecting
the most elusive component, non-baryonic dark matter. Galaxy formation theory is
driven by phenomenology and by numerical simulations of dark matter clustering
under gravity. Once the complications of star formation are incorporated, the theory
becomes so complex that the brute force approach of numerical simulations needs
to be supplemented by incorporation of such astrophysical processes as feedback by
supernovae and by active galactic nuclei. I present a few semi-analytical perspectives
that may shed some insight into the nature of galaxy formation.

4.1 Introduction

Dark matter dominates over ordinary matter. The observations are com-
pelling. Of course, by definition we do not observe matter if it is dark. Minimal
gravitational theory is needed to take us from the observational plane to con-
clude that dark matter is required. Gravity has been tested over scales that
range from millimetres to megaparsecs. Newton’s description of gravity is per-
fectly adequate, apart from generally small deviations due to the curvature
of space near massive objects, such as stars, or more radically, black holes.
Einstein’s theory of gravity tells us that gravity curves space and measuring
this effect was one of the great triumphs of 20th century physics. Nevertheless,
pending its direct detection, dark matter remains a hypothesis that depends,
inevitably, on our having the correct theory of gravitation. For the remainder
of this review, however, I will assume the reality of dark matter dominance
on scales from galactic to those spanning the entire universe.

The standard (or concordance) model of cosmology has a predominance
of dark energy. which amounts to 65% of the mass energy today whereas
non-baryonic matter is 30%. In contrast, luminous baryons (mostly in stars)
constitute 0.5% towards the total. An important component of the standard
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model is the spectrum of primordial density fluctuations, measured in the lin-
ear regime via the temperature anisotropies of the CMB. This provides the ini-
tial conditions for large-scale structure and galaxy formation via gravitational
instability once the universe is matter-dominated. Dark matter consequently
provides the gravitational potential wells within which galaxies formed. The
dark matter and galaxy formation paradigms are inextricably interdependent.
Unfortunately we have not yet identified a dark matter candidate, nor do we
yet understand the fundamental aspects of galaxy formation. Nevertheless,
cosmologists have not been deterred, and have even been encouraged to de-
velop novel probes and theories that seek to advance our understanding of
these forefront issues.

Progress has been made on the baryonic dark matter front. Only about half
of the baryons initially present in galaxies, or more precisely, on the comoving
scales over which galaxies formed, are directly observed. We cannot predict
with any certainty the mass fraction in dark baryons. Yet there are excellent
candidates for the dark baryons, both compact and especially diffuse.

In contrast, we have at least one elegant and moderately compelling theory
of particle physics, SUSY, that predicts the observed fraction of nonbaryonic
dark matter. Unfortunately, we have no idea yet as to whether the required
stable supersymmetric particles actually exist.

In this review, I will first describe the increasingly standard precision
model of cosmology that enables us to provide an inventory of cosmic baryons.
I summarise the current situation with regard to possible baryonic dark mat-
ter. I discuss how nonbaryonic matter has been successfully used to provide
an infrastructure for galaxy formation, and review the astrophysical issues,
primarily centering on star formation and feedback. I conclude with the out-
look for future progress. for nonbaryonic dark matter detection and galaxy
formation.

4.2 Precision Cosmology

Modern cosmology has emphatically laid down a challenge to theorists. A
combination of new experiments has unambiguously measured the key pa-
rameters of our cosmological model that describes the universe. These include
the temperature fluctuations in the cosmic microwave background, the large
galaxy redshift surveys, gravitational shear distortions of distant galaxies by
lensing, the studies of the intergalactic medium via the distribution of ab-
sorbing neutral clouds along different lines of sight and the use of distant
Type Ia supernovae as standard candles. Cosmologists now debate the er-
ror bars of the standard model parameters. The ingredients of the standard
model in effect define the model. These most crucially are the Friedmann-
Robertson-Walker metric and the Friedmann-Lemaitre equations, and the
contents of the universe: baryons, neutrinos, photons, baryons, dark mat-
ter and dark energy. On these constituents is superimposed a distribution of
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primordial adiabatic density (scalar) fluctuations characterised by a power
spectrum of specified amplitude and spectral index. In addition, there may
be a primordial gravity wave tensor mode of fluctuations. The number of free
parameters in the standard model is 14, of which the most significant are:
H0, Ωb, Ωm, ΩΛ, Ωγ , Ων , σ8, ns, r, nT , and τ. One can also add an equation
of state for dark energy parameter, w = −pΛ/ρΛ, in effect really a function of
redshift, and a rolling scalar (and possibly tensor) index, dns/dlnk.

No single observational set constrains all, or even most, of these parame-
ters. There are well-known degeneracies, most notably between ΩΛ and Ωm, σ8

and τ, and σ8 and Ωm. However use of multiple data sets helps to break these
degeneracies. For example, CMB anisotropies fix the combination Ωm + ΩΛ

if a Hubble constant prior is adopted, as well as Ωbh
2 and Ωmh2, and SNIa

constrain the (approximate) combination Ωm − ΩΛ. Both weak lensing and
peculiar velocity surveys specify the product Ω−0.6

m σ8. Lyman alpha forest sur-
veys extend the latter measurement to Mpc comoving scales, probing the cur-
rently nonlinear regime. Finally, baryon oscillations are providing a measure
of Ωm/Ωb, independently of the CMB. Interpretation in terms of a standard
model (Friedmann-Lemaitre plus adiabatic fluctuations) yields the concor-
dance model with remarkably small error bars [1].

The flatness of space is measured to be Ωtotal = 1.02± 0.02. Dark energy
in the form of a cosmological constant dominates the universe, with ΩΛ =
0.72± 0.02. The dark energy equation of state is indistinguishable from that
of a cosmological constant, with w ≡ pΛ/ρΛc

2 = −0.99± 0.1, this uncertainty
holding to z ∼ 0.5. Even at z ∼ 1, the claimed uncertainty around w = −1
is only 20 percent. Non-baryonic dark matter dominates over baryons with
Ωm = 0.27 ± 0.02 and Ωb = 0.044 ± 0.004. Most of the baryons are non-
luminous, since Ω∗ ≈ 0.005.

The spectrum of primordial density fluctuations is unambiguously mea-
sured both in the CMB and in the large-scale galaxy distribution from deep
redshift surveys, and found to be approximately scale-invariant, with scalar
index ns = 0.98 ± 0.02. One can also constrain a possible relic gravitational
wave background, a key prediction of inflationary cosmology, by the tensor
mode limit on relic gravitational waves: T/S < 0.36. It has been argued that
a fundamental test of inflation requires sensitivity at a level T/S >∼ 0.01 [2].
Neutrinos are known to have mass as a consequence of atmospheric (ντ , νμ)
and solar (νμ, νe) oscillations, with a deduced mass in excess of 0.001 eV for
the lightest neutrino. From the power spectrum of the density fluctuations,
the inferred mass limit (on the sum of the 3 neutrino masses) is Σmν < 0.4eV.

However one note of caution should be added. These tight error bars all
depend on adoption of simple priors. If these are extended, to allow, for ex-
ample, for an admixture of generic primordial isocurvature fluctuations, the
error bars on many of these parameters increase dramatically, by up to an
order of magnitude.

Clearly, the devil is in the observational details [3, 4, 5, 6]. Popular models
of inflation predict that n ≈ 0.97. Space is expected to be very close to flat,
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with Ω = 1 +O(10−5). The numbers of rare massive objects at high redshift
is specified by the theory of gaussian random fields applied to the primordial
linear density fluctuations. The universe as viewed in the CMB should be
isotropic [7, 8, 9, 10, 11, 12]. Any deviations from these predictions would be
immensely exciting.

Suppose deviations were to be found. This would allow all sorts of possi-
ble extensions to the standard model of cosmology. One might consider the
signatures of string relics of superstrings or transplanckian features in δT/T |k
[14]. Large-scale cosmology might be affected by compact topology or global
anisotropy with observable signatures in CMB temperature and polarisation
maps [15]. The initial conditions might involve primordial nongaussianity.
Anthropically constrained landscape scenarios of the metauniverse prefer a
slightly open universe [16]. Some of these features, and others, could be a
consequence of compactification from higher dimensions.

4.3 The Global Baryon Inventory

There are several independent approaches to obtaining the baryon abun-
dance in the universe. At z ∼ 109, primordial nucleosynthesis of the light
elements yields Ωb = 0.04 ± 0.004. At the epoch of matter-radiation decou-
pling, z ∼ 1000, the ratios of odd and even CMB acoustic peak heights set
Ωb = 0.044 ± 0.003. At more recent epochs, Lyman alpha forest modelling
of the intergalactic medium at z ∼ 3 as viewed in absorption along differ-
ent lines of sight towards high redshift quasars at z ∼ 3 yields Ωb ≈ 0.04.
At the present epoch, on very large scales, of order 10 Mpc comoving linear
regime equivalent, the intracluster baryon fraction measured via x-ray obser-
vations of massive galaxy clusters provides a baryon fraction of 15%. This
translates into Ωb ≈ 0.04. In summary, we infer that Ωb = 0.04 ± 0.005 and
Ωb/Ωm = 0.15± 0.02.

One’s immediate impression is that, at least until very recently, most of
the baryons in the universe today are not accounted for. The reasoning is as
follows. The luminous content in the form of stars sums to Ωb ≈ 0.004 or 10%
in spheroids, and Ωb ≈ 0.002 or 5% in disks. There is also hot intracluster gas
amounting to Ωb ≈ 0.002 or 5%. Current epoch observations of the cold/warm
photo-ionised IGM via the nearby Lyman alpha/beta forest at 104− 105K as
well as CIII (at z ∼ 0) yield a much larger baryonic reservoir of gas, Ωb ≈ 0.012
or 30%. This gas is metal-poor, with an abundance of about 10% solar [17].
So far, we have only accounted for 50% of current epoch baryons.

The probable breakthrough, however, has come with recent detections of
the warm-hot intergalactic medium at T <∼ 105 − 106K at z ∼ 0, observed in
OVI absorption in the UV and especially via x-ray absorption via OVII and
OVIII hydrogen-like transitions towards low redshift luminous AGN. Some-
thing like Ωb ≈ 0.012 or 30% of the primordial baryon fraction appears to be
in this form, enriched (in oxygen, at least) to about 10% of the solar value [18].
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We now have >∼ 80% of the baryons accounted for today. The total baryon
content sums to Ωb = 0.032 ± 0.005. Given the measurement uncertainties,
this would seem to remove any strong case for more exotic forms of dark
baryons being present.

However, the situation is not so simple. The Andromeda Galaxy and our
own galaxy are especially well-studied regions, where dark matter and baryons
can be probed in detail. In the Milky Way Galaxy, the virial mass out to
100 kpc is Mvirial ≈ 1012M�, whereas the baryonic mass, mostly in stars, is
M∗ ≈ 6−8×1010M�. The inferred baryon fraction is at most 8% [19]. Similar
statements may be made for massive elliptical galaxies [20]. These in fact are
upper limits as the dark mass estimate is a lower bound.

I infer that globally, there is no problem. Nevertheless the outstanding
question is: where are the galactic baryons? Most of the baryons are globally
accounted for. But this is not the case for our own galaxy and most likely for
all comparable galaxies. We cannot account for a mass in baryons comparable
to that in stars. It is possible that up to 10% of all the baryons may be dark,
and that the dark baryons are comparable in mass to the galactic stars.

4.4 The “Missing” Baryons

There are several possibilities for the “missing” baryons. Perhaps they never
were present in the protogalaxy. Or they are in the outer galaxy. Or, finally,
they may have been ejected.

The first of these options seems very unlikely (although we return below
to a variant on this). Consider the second option. The most likely candidates
for dark baryons are massive baryonic objects or MACHOs. These are con-
strained by several gravitational microlensing experiments. The allowed mass
range is between 10−8 and 10 M�, and the best current limit on the MACHO
abundance is <∼ 20% of the dark halo mass. In fact, one experiment, that
of the MACHO Collaboration, claims a detection from some 20 events seen
towards the LMC, most of which cannot be accounted for by star-star mi-
crolensing. The observed range of amplification time-scales specifies the mass
of the lensing objects. The preferred MACHO mass is around ∼ 0.5 M�.

This mass favours an interpretation in terms of old halo white dwarfs.
Main sequence stars in this mass range can be excluded. Current searches for
halo high velocity old white dwarfs utilise the predicted colours and proper
motions as a discriminant from field dwarfs, and set a limit of <∼ 4% of the
dark halo mass on a possible old white dwarf component in the halo [21]. How-
ever even if this limit were to apply, an extreme star formation history and
protogalactic IMF would be required. Observations at high redshift both of
star-forming galaxies and of the diffuse extragalactic light background, com-
bined with chemical evolution and SNIa constraints, make such an hypothesis
extremely implausible.
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If the empirical mass range constraint is relaxed, theory does not exclude
either primordial brown dwarfs (0.01− 0.1 M�), primordial black holes (mass
>∼ 10−16M�) or even cold dense H2 clumps <∼ 1 M�. The latter have been

invoked in the Milky Way halo in order to account for extreme halo scattering
events [22] or unidentified submillimetre sources [23]. However these possibili-
ties seem to be truly acts of the last resort in the absence of any more physical
explanation.

There is indeed another possibility that seems far less ad hoc. The nearby
intergalactic medium is enriched to about 10% of the solar metallicity, and
contains of order 50% of the baryons in photo-ionised and collisionally ionised
phases. This strongly suggests that ejection from galaxies via early winds must
have occurred, and moreover would inevitably have expelled a substantial
fraction of the baryons along with the heavy elements. Supporting evidence
comes from x-ray observations of nearby galaxy groups, which demonstrate
that many of these are baryonically closed systems, containing their prescribed
allotment of baryons.

There are candidates for young galaxies undergoing extensive mass loss
via winds. These are the Lyman break galaxies at z ∼ 2 − 4. Observations
of spectral line displacements of the interstellar gas relative to the stellar
component as well as of line widths are indicative of early winds from L∗
galaxies [24]. Studies of nearby starburst galaxies, essentially lower luminosity
counterparts of the distant LBGs, show that the gas outflow rate in winds is
of order the star formation rate. The intracluster medium to z ∼ 1 is enriched
to about a third of the solar metallicity, again suggestive of massive early
winds, in this case from early-type galaxies. Hence the “missing” baryons
could be in the IGM, with about as much mass ejected in baryons as in stars
remaining.

The ejection hypothesis however has to confront a theoretical difficulty.
Winds from L∗ galaxies cannot be reproduced by hydrodynamical simulations
of forming galaxies [25]. The momentum source for gas expulsion appeals to
supernovae. SN feedback works for dwarf galaxies and can explain the observed
outflows in these systems. However an alternative feedback source is needed for
massive galaxies. This most likely is associated with AGN, and the ubiquitous
presence of central supermassive black holes in galaxy spheroids.

First, however, I address a more pressing and not unrelated problem,
namely given that 90 percent of the matter in the universe is nonbaryonic
and cold, how well does CDM fare in confronting galaxy formation models?

4.5 Large-scale Structure and Cold Dark Matter:
The Issues

The cold dark matter hypothesis has had some remarkable successes in con-
fronting observations of the large-scale structure of the universe. These have
stemmed from predictions, now verified, of the amplitude of the temperature
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fluctuations in the cosmic microwave background that are directly associated
with the seeds of structure formation. The initial conditions for gravitational
instability to operate in the expanding universe were measured. The forma-
tion of galaxies and galaxy clusters was explained, as was the filamentary na-
ture of the large-scale structure of the galaxy distribution. Nor was only the
amplitude confirmed as a prerequisite for structure formation. The Harrison-
Zeldovich-Peebles ansatz of an initially scale-invariant fluctuation spectrum,
later motivated by inflationary cosmology, has now been confirmed over scales
from 0.1 to 10000 Mpc, via a combination of CMB, large-scale galaxy distri-
bution and IGM measurements.

Despite these stunning successes, difficulties remain in reconciling the-
ory with observations. These centre on two aspects: the uncertainties in star
formation physics that render any definitive predictions of observed galaxy
properties unreliable, and the detailed nature of the dark matter distribution
on small scales, where the simulations are also incomplete.

The former issues include such observables as the galaxy luminosity func-
tion, disk sizes and mass-to-light ratios, and the presence of old, red massive
galaxies at high redshift. These difficulties in the confrontation of galaxy for-
mation theory and observational data are plausibly resolved by improving the
prescriptions for star formation and feedback, although there are as yet no
definitive answers. The latter issues require high resolution dark matter sim-
ulations combined with hydrodynamic simulations of the baryons including
star formation and feedback.

I will focus first on the dark matter conundrums, and in particular on the
challenges posed by theoretical predictions of dark matter clumpiness, cuspi-
ness and concentration. Implementation of numerical simulations of dark halos
of galaxies in the context of hierarchical galaxy formation yields repeatable
and reliable results at resolutions of up to ∼ 105 M� in M∗ halos. It is clear
that the simulations predict an order of magnitude or more dwarf galaxy halos
than are observed as dwarf galaxies. It is more controversial but probably true
that the dark halos of dwarf galaxies and of barred galaxies do not have the
∼ r−1 central cusps predicted by high resolution simulations. The dark matter
concentration parameter, defined by the ratio of r200, approximately the virial
scale, to the scale length, within which the cusp profile is found, measures the
cosmological density at virialisation, and hence should be substantially lower
for late-forming galaxy clusters than for galaxies. This may not be the case in
the best-studied examples of massive gravitationally lensed clusters, cf. [26].
There are also examples of early-forming massive clusters [27]

4.6 Resurrection via Astrophysics

There are at least two viewpoints about resolving the dark matter issues, in-
volving either fundamental physics or astrophysics. Tinkering with fundamen-
tal physics, in essence, opens up a Pandora’s box of phenomenology. It seems
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to me that one should first take the more conservative approach of examining
the impact of astrophysics on the dark matter distribution before advocating
more fundamental changes. Of course if one could learn about fundamental
physics, such as a new theory of gravity or higher dimensional dark matter
relics from dark matter modelling, this would represent an unprecedented and
unique breakthrough. But the prospect of such revelations may be premature.

Astrophysical resolution involves two complementary approaches. One in-
corporates star and AGN feedback in the dense baryonic core that forms by
gas dissipation. Massive gas outflows can effectively weaken the dark matter
gravity, at least in the central cusp. These may include stellar feedback driving
massive winds via supernovae augmented by a top-heavy IMF and/or by hy-
pernovae, or the impact of supermassive black hole-driven outflows. Another
mechanism that shows some promise in terms of generating an isothermal
dark matter core is dynamical feedback, via a central massive rotating gas
bar. Such bars may form generically and dissolve rapidly, but their dynamical
impact on the dark matter has not yet been fully evaluated [28, 29, 30].

All of these are radical procedures, but some are more radical than others.
To proceed, one has to better understand when and how galaxies formed.
Fundamental questions in galaxy formation theory still remain unresolved.
Why do massive galaxies assemble early? And how can their stars form rapidly,
as inferred from the α/Fe abundance ratios? Where are the baryons today?
And if, as observations suggest, they are in the intergalactic medium, including
both the photo-ionised Lyman α forest and the collisionally ionised warm-hot
intergalactic medium (WHIM), how and when is the intergalactic medium
(IGM) enriched to 0.1 of the solar value? Can the galaxy luminosity function
be reconciled with the dark matter halo mass function? Does the predicted
dark matter concentration allow a simultaneous explanation of both the Tully-
Fisher relation, the fundamental plane and the galaxy luminosity function?
And for that matter, is the dark matter distribution consistent with barred
galaxy and low surface brightness dwarf galaxy rotation curves?

The observational data that motivates many of these questions can be
traced back to the colour constraints on the interpretation of galaxy spectral
energy distributions by population synthesis modelling [31, 32]. The galaxy
distribution is bimodal in colour, and this can be seen very clearly in studying
galaxy clusters. The presence of a red envelope in distant clusters of galaxies
testifies to the early formation of massive ellipticals. A major recent break-
through has been the realisation from UV observations with GALEX that
many ellipticals, despite being red, have an ongoing trickle of star formation.
Most field galaxies and those on the outskirts of clusters are blue, and are
actively forming stars.

The general conclusion is that there must be two modes of global star
formation: quiescent and starburst. The inefficient, long-lived, disk mode is
motivated by cold gas accretion and global disk instability. The low efficiency
is due to negative feedback. The disk mode is relatively quiescent and contin-
ues to form stars for a Hubble time. The violent starburst mode is necessarily
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efficient as inferred from the [α/Fe] clock. It is motivated by mergers, in-
cluding observations and simulations, as well as by CDM theory. The high
efficiency is presumably due to positive feedback, but it is not clear how the
feedback is provided.

4.7 What Determines the Mass of a Galaxy?

The luminosity function of galaxies describes the stellar mass function of
galaxies. It is biased by star formation in the B (blue) band but is a good
tracer in the near-infrared (K) band. It is sensitive to the halo mass, at least for
spiral galaxies, as demonstrated by rotation curves. There is a characteristic
luminosity, and hence a characteristic stellar mass, associated with galaxies:
L∗ ≈ 3 × 1010L� and M∗ ≈ 1011M�. The luminosity function declines expo-
nentially at L > L∗. This is most likely a manifestation of strong feedback.

Consider first the mass-scale of a galaxy. There is no difference in dark
matter properties between galaxy, group or cluster scales, but there is a very
distinct difference in baryonic appearance. Specifically, the baryons are mostly
in stars below a galaxy mass scale of M∗ and mostly in hot gas for systems
much more massive than M∗, such as galaxy groups [33] and clusters. A sim-
ple explanation comes from considerations of gas cooling and star formation
efficiency. It does not matter whether the gas infall initially is cold or whether
it virialises during infall. The gas generically will be clumpy, and cloud colli-
sions will be at the virial velocity. In order for the gas to form stars efficiently,
a necessary condition is that the cooling time of the shocked gas be less than
a dynamical time, or tcool <∼ tdyn.

The inferred upper limit on the stellar mass, for stars to form within a
dynamical time in a halo of baryon fraction fb and mean density ρh, can be
written as

M∗ = Aβm2β
p G−(3+β)/2(tcool/tdyn)βf

1−β
b ρ

(β−1)/2
h ,

where the cooling rate has been taken to be Λ = Av
2−3/β
s , with β ≈ 1 being

appropriate for metal-free cooling in the temperature range 105− 106K. This
yields a characteristic mass M∗/mp ≈ 0.1α3α−2

g (mp/me)(tcool/tdyn) ≈ 1068,
where αg = Gm2

p/e
2. This is comparable to the stellar mass associated with

the characteristic scale in the Schechter fit to the luminosity function, and
also the scale at which galaxy scaling relations change slope. However there
is no reason to believe that the dynamical time argument gives as sharp a
feature as is observed in the decline of the galaxy luminosity function to high
luminosities. Additional physics is needed.

4.8 Disk Galaxy Formation

In the quiescent mode, the clumpy nature of accretion suggests that ministar-
bursts might occur. In fact, what is more pertinent is the runaway nature of
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supernova feedback in a cold gas-rich disk. Initially, exploding stars compress
cold gas and stimulate more star formation. Negative feedback is eventually
guaranteed in part as the cold gas supply is exhausted and also as the cold
gas is ejected in plumes and fountains from the disk, subsequently to cool and
fall back.

Global simulations have inadequate dynamical range to follow the mul-
tiphase interstellar medium, supernova heating and star formation. The fol-
lowing toy model provides an analytical description of disk star formation. I
assume that self-regulation applies to the hot gas filling factor 1− e−Q, where
Q is the porosity and is defined by

(SN bubble rate)× (maximum bubble 4-volume)
∝ (star formation rate)×

(
turbulent pressure−1.4

)
.

One can now write the star formation rate as [34]

αS × rotation rate × gas density

with αS ≡ Q× ε. Here ε = (σgas/σf )2.7, where the fiducial velocity dispersion
σf ≈ 20 kms−1

(
ESN/1051ergs

)0.6 (200M�/mSN)0.4 . Here mSN is the mass
in stars formed per supernova and ESN is the initial kinetic energy in the
supernova explosion. The star formation efficiency αS ≡ Qε is

0.02
( σgas

10 kms−1

)( vc
400 kms−1

)( mSN

200M�

)(
1051ergs
ESN

)
.

The observed mean value is 0.017 [35]. Also, the analytic expression derived
for the star formation rate agrees with that found in 3-D multiphase simula-
tions [36]. In fact, the observed distribution of young stars in merging galaxies
cannot be fit by modelling the star formation rate with a Schmidt-Kennicutt
law, but requires the incorporation of a turbulence-like term [37], as incorpo-
rated in this simple model. It follows that porosity is small in merger-induced
star formation, where the turbulence will be high, since Q = αS/ε ∝ σ−1.7

gas .

4.8.1 Outflows from Disks

To extract the wind rate, we may assume that the hot gas phase vents out of
the disk in a phenomenon resembling a fountain, if the energy input is insuf-
ficient to drive a galactic wind. One expects that the disk outflow rate equals
the product of the gas flow rate, the hot gas mass, the hot gas surface filling
factor and the mass loading factor (fL). One may rewrite the outflow rate as

Ṁoutflow ≈ fLMhotΩ(1 − e−Q) = fLfhotQMgasΩ = fLfhotQε−1Ṁ∗ .

This reduces to

Ṁoutflow = fLfhot

(
σf
σgas

)2.7

Ṁ∗ .
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In dwarfs, Ṁoutflow ∼ Ṁ∗ if Q is of order 50% and both fL and fhot take
on typical values: the outflow rate is of order the star formation rate. This
evidently only is the case for dwarf galaxies. Once ε � 1, or σgas � σf , the
wind is suppressed, that is, outflows are suppressed in massive galaxies.

This begs the question of how massive disks such as our own and M31
have depleted their initial baryon content by of order 50 percent. One can-
not appeal to protospheroid outflows initiated by AGN (see below) to resolve
this issue. Presumably baryon depletion in late-type massive disks (with small
spheroids) must have occurred during the disk assembly phase. A collection
of gas-rich dwarfs most likely assembled into a current epoch massive disk,
and outflows from the dwarfs could plausibly have expelled of order half of
the baryons into the Local Group or even beyond. However weak lensing
studies find that the typical late-type galaxy in a cluster environment ap-
pears to have utilised its full complement of baryons over a Hubble time
[38], whereas an early-type galaxy may indeed have expelled about half of
its baryons into the intracluster medium. In rich clusters, the baryon com-
plement is complete, and in the field there is increasing evidence that the
warm-hot intergalactic medium at ∼ 106K, perhaps in combination with the
clouds responsible for the Lyman alpha forest, accounts for up to 50% of the
baryons.

4.9 Spheroidal Galaxy Formation

Galaxy spheroids formed early. The inferred high efficiency of star formation
on a short time-scale, as inferred from the α/Fe enhancement as well as from
the occurrence of old galaxies at high redshift, is suggestive of a feedback
mechanism distinct from, and much more efficient than, supernovae. This
may be negative, star formation being quenched, or it may be positive, star
formation being enhanced. Either process speeds up the star formation phase.

The preferred context for such a mechanism is that of ultraluminous star-
bursts. Major mergers between galaxies produce extreme gas concentrations
that provide an environment for the formation of supermassive black holes.
The observed correlation between SMBH mass and the spheroid velocity dis-
persion suggests contemporaneous SMBH growth and coupled formation of
the oldest galactic stars. The spheroid stars are old and formed when the
galaxy formed. Hence the SMBHs, which account via the empirical correlation
for approximately 0.001 of the spheroid mass, must have formed in the proto-
galaxy more or less contemporaneously with the spheroid. Supermassive black
hole growth is certainly favoured in the gas-rich protogalactic environment.

4.9.1 Outflows from Protospheroids

One may actually be seeing the AGN-triggering phenomenon at work in ultra-
luminous infrared galaxies (ULIGs), which plausibly are the sites of spheroid
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formation and SMBH growth, as well as in powerful radio and in some sub-
millimetre galaxies. High velocity neutral winds are found both in NaI [44]
and in HI absorption [45] against the central bright nuclei. The rate of mass
ejected in these superwinds is inferred to be a significant fraction of the star
formation rate. Hence the baryon mass ejected is likely to be of order the
stellar mass formed. This helps account for the baryon budget, with a com-
plementary mechanism involving supernovae operative in dwarf galaxies and
the precursor phase of massive disks.

A simple analytic model of this phenomenon may be constructed as follows.
AGN momentum-driven outflow is inevitable once the mechanical momentum
luminosity Ṁwvw or the radiative momentum luminosity fEddLEdd/c exceeds
GMMg/r

2, i.e. σ4/Gfb. Here, fEdd = L/LEdd, where the AGN luminosity L
includes both the nonthermal contribution from the AGN and the luminosity
associated with the enhanced rate of associated galactic star formation. There
is a chicken versus egg problem here: does star formation induced by a recent
merger feed the AGN or does the impact of the AGN, itself fueled via a
merger, on its environment induce star formation? The prevalent view favours
the former hypothesis, with the ensuing AGN outflow helping to sweep out
residual gas and terminate star formation [13].

Assume now that outflows lead to saturation of the star formation rate
by exhausting the cold gas supply. I infer that Mbh = fbf

−1
Edd

κσ4

4πG2 . The cool-
ing criterion for star formation efficiency guarantees that this relation must
saturate for black hole masses of around 108M� if the relevant dynamical
time-scale is gravitational (corresponding to a spheroid mass of ∼ 1011M�),
but the reduced time-scale of AGN feedback increases the saturation limit to
109 − 1010M�.

Now whether the AGN wind is driven by radiation pressure or mechanical
outflow, one still expects that ṀAGN

w ∝ L/c with 0.1 <∼ fEdd <∼ 1 and LEdd =
4πGcMbh/κ. In fact, ṀAGN

w = L
cvw

= σ3

G
σ
vw

. In contrast, for a supernova-
driven wind:

ṀSN
outflow = fLfhot

(
σf
σgas

)2.7

Ṁ∗ ∝ Ṁ∗σ−2.7
gas .

Comparing the two outflows gives

ṀSN
w

ṀAGN
w

= fLfhotfbQ(vw/σgas)� 1 .

This outflow suffices to limit the period of star formation by removing the gas
supply.

4.10 Numerical Simulations

Numerical simulations of large-scale structure have made immense progress
in the past decade. There are at least two major insights that have emerged
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from the simulations. One is the filamentary, web-like nature of the dark mat-
ter and galaxy distributions in a cold dark matter-dominated universe. A
second is the clumpy substructure of galaxy halos. Galaxy redshift surveys
reveal the bubbles, sheets and filaments that characterise large-scale struc-
ture. This is quantified by studying the two-point and higher order corre-
lation functions, as well as other statistical measures. Semi-analytical tech-
niques are introduced in order to specify prescriptions for star formation,
along the lines of the discussion in the previous sections. Only the sim-
plest prescriptions have so far been applied. Theory and data agree well,
with the normalisation of the fluctuation power spectrum and its slope being
empirically determined. However there is little doubt that until now, simu-
lations have failed to cope adequately with the complex physics of galaxy
formation.

The clumpiness of dark matter halos is a prediction that has yet to be
verified, pending the detection of halo dark matter. It has important conse-
quences, because the annihilation flux is proportional to the square of the
dark matter density, and the clumpiness boost can amount to a factor of 100
or even more.The actual value depends on the complexity of clump survival
and disruption due to tidal interactions with the galaxy, including the disk
for massive clumps, and stars for the lowest mass clumps [46, 47]. Multiple
lensing of quasars by intervening massive halos has provided hints of halo
substructure, due to anomalous flux ratios [48].

The starting point for the semi-analytical simulations is a condition for star
formation. This is the condition that the coolng time-scale be less than the
local dynamical time for the baryons. Unfortunately this is only a necessary
condition: it does not guarantee star formation. Assuming a local initial stellar
mass function and efficiency of star formation, the first generation of semi-
analytics found that the number of dwarf galaxies was greatly overproduced.In
hindsight, this was obvious from the original Press-Schechter prescription, up-
dated by Sheth and Tormen [49], which yields the galaxy halo mass function.
An even more worrying result was that the more massive galaxies were found
to be younger than the less massive galaxies. Again this is obvious in retro-
spect, since the dynamical time increases with epoch, as does the typical mass
of a forming galaxy.

Progress was made in the next generation of simulations which incorpo-
rated more realistic feedback prescriptions. The gas evolution was followed in
more detail, with differing prescriptions for isolated systems, undergoing cold
gas infall, from merging systems, where the gas is gravitationally heated. The
first supernovae to form in dwarf galaxies are assumed to eject a substantial
fraction of the baryons. This assumption leads to a a strong suppression of
the number of dwarf galaxies. This comes at a cost, however. The mass-to-
light ratio of disk galaxies, as evidenced by the normalisation of the Tully-
Fisher relation, is overestimated. The two problems are connected: solving
one makes the other worse. Another problem that appeared with increasing
dynamic range was that massive galaxies were overproduced. This is due to
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the so-called overcooling problem: baryons that can cool will cool, and, at
least in the simulations, form stars.

Detailed simulations with cosmological initial conditions confirmed the
worst fears of the sceptics. While the initial specific angular momentum
matched that estimated analytically from 2nd order perturbation theory, some
90% was lost via baryonic interactions with the clumpy dark matter halo. the
resulting galaxies have large spheroidal components. To date, there is no con-
sensus on how a galaxy with low bulge-to-disk ratio, characteristic of a Milky-
way type spiral galaxy, is formed. The angular momentum problem is further
compounded by the fact that the observed angular momentum distribution of
a disk galaxy, found to be universal, bears little resemblance to the the pre-
dicted distribution [50]. which has a significant fraction of negative angular
momentum gas relative to the total angular momentum of the dark halo.

Even the relatively simpler pure n-body simulations of individual halo
formation pose a challenge. There is a consensus on the resulting dark matter
profile. It is fit phenomenologically by the function

ρ = Ar−α(1 + r/rs
2)1−α ,

where α ≈ 1.2 and C = rv/rs is the measured concentration parameter with
rv the virial radius, roughly the radius at which the halo overdensity is 200.
The simulations show that C is a function of halo formation redshift (and
equivalently, a function of halo mass) and the hierarchical evolution is fit
by C ∝∼ 1 + z. [51] The difficulty here is that low surface brightness dwarf
galaxies, inferred from the rotation curves to be dark matter-dominated, have
low concentration parameters for their masses. Moreover the central density
profiles are often flatter than predicted. The resolution here may be in part due
to noncircular orbits and inadequate disk modelling.Another possibility is a
complex dynamical history of baryon-dark matter interactions, given that the
chemical abundances require severe mass loss to have occurred via supernova-
driven outflows. For example, sustained gas flows can heat the dark matter
cores [52]. Similar processes can even affect dark halo cusps in massive disk
galaxies, via bar dissipation and dissolution [53].

The latest generation of semi-analytic simulations explore new astro-
physics to help resolve some of the most persistent problems concerning mas-
sive galaxy formation. The new ingredient is that of massive gas outflows
triggered by AGN, and in particular during the final phases of supermassive
black hole growth by gas accretion. one observes immensely energetic out-
flows in the broad emission line regions of quasars, amounting to of order a
solar mass per year at a velocity in excess of 0.2c, or 1046 ergs/s. The initial
flow must be adiabatic, and the energy available for heating the interstellar
medium is some 2 orders of magnitude per unit gas mass more than that
available from supernovae. At the Eddington luminosity, a quasar is expected
to have a mechanical outflow of order 0.1LEdd ≈ 1046M9 ergs/s for a central
black hole of 109M9M�. For example, the AGN energy input in a luminous
quasar with a 3 × 108M� central black hole, appropriate to an L∗ elliptical
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host galaxy, is at least 4×1054 ergs per century, whereas the SN energy input
is 2 × 1051 ergs per century per 1010L�. For an L∗ elliptical, the luminosity
in the formation phase, assumed to last 108t8 years, is 1012t−1

8 L�.
The fuelling rate of the black hole is of order the outflow rate, namely

around a solar mass per year, and this is a small fraction, of order a percent
of the mass in protogalactic gas flows, which in turn are of order the inferred
protogalactic star formation rate. Star formation must occur with high ef-
ficiency during massive spheroid formation. Major mergers provide a more
than adequate fuel supply [33] that is plausibly self-regulated by the quasar
luminosity.

Incorporation of black hole growth, feeding and outflows into the semi-
analytics has led to the resolution of several outstanding issues at the cost
of greatly increasing the astrophysical complexity. One can easily avoid the
overcooling problem in massive galaxy halos. A related problem is also re-
solved in clusters of galaxies, where the cooling flows are largely quenched by
AGN activity. The negative feedback also helps account for the most massive
galaxies in clusters being bulge-dominated [42, 43].

The models also predict that the most massive early-type galaxies in clus-
ters are older than their lower mass counterparts. This anti-hierarchical be-
haviour is a consequence of the negative feedback being assumed only to be
relevant for the most massive galaxy in a cluster or group. It is not yet clear if
the inferred age difference is sufficient to account for the [α/Fe] excess in mas-
sive ellipticals. A clear prediction of the latest generation of semi-analytics is
that cluster galaxies are significantly older than field galaxies of similar mass.
This is one more example of how models are rapidly overtaken by observation.
The most recent study of the fundamental plane in massive clusters finds only
a very small present-day age difference ( <∼ 0.4Gyr) between massive cluster
and field early-type galaxies [55]. At least one fundamental weakness is com-
mon to all semi-analytic simulations. There is no reason to assume that local
prescriptions are valid in the more extreme conditions of the early universe.
The latest feedback models utilise a local IMF. However adopting a top-heavy
IMF in merger-induced starbursts is one explanation proffered [56] for the ex-
cess of powerful submillimeter and infrared galaxies at z ∼ 2 compared to
model predictions. This suggests one should be cautious about the degree of
robustness of semi-analytical galaxy formation simulation predictions.

4.11 The Case for Positive Feedback

Another clue is that both SMBHs, as viewed in AGN and quasars, and mas-
sive galaxy spheroids formed anti-hierarchically at a similar epoch, peaking
at z ∼ 2. Massive systems form before less massive systems. This could be
a consequence of the same feedback mechanism, which necessarily must be
positive in order to favour the massive systems. Supernova feedback is neg-
ative and is most effective in low mass systems. SMBH outflows provide an
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intriguing possibility for positive feedback that merits further exploration.
What is lacking for the moment is quantitative evidence for the frequency
with which AGN activity is associated with ultraluminous infrared galaxies.
Nevertheless, AGN feedback seems to provide the most promising direction
for progress.

A specific mechanism for positive feedback appeals to SMBH-induced out-
flows interacting with the clumpy protogalactic medium. Twin jets are accel-
erated from the vicinity of the SMBH along the minor axis of the accretion
disk. These jets are the fundamental power source for the high non-thermal lu-
minosities and the huge turbulent velocities measured in the nuclear emission
line regions in active galactic nuclei and quasars. The jets drive hot spots at a
velocity of order 0.1c that impact the protogalactic gas. In a cloudy medium,
the jets are frustrated and generate turbulence. The jets are surrounded by
hot cocoons that engulf and overpressure ambient protogalactic clouds [39].
These clouds collapse and form stars. The speed of the cocoon as it overtakes
the ambient gas clouds greatly exceeds the local gravitational velocity. In this
way, a coherent and positive feedback is provided via triggering of massive
star formation and supernovae on a time-scale shorter than the gravitational
crossing time [40]. The short duty cycle for the AGN phase relative to the
longer duty cycle for the induced starburst must be incorporated into infer-
ences from surveys about the frequency of associated AGN activity, if any.

Let us formulate these ideas more precisely. The AGN-induced star for-
mation rate is ṀAGN

∗ = εMgas/tjet. One can rewrite this as fgεσ
2vjet/G.

Hence for some fiducial spread of jet velocities, one deduces (since ε ∝ σ) that
ṀAGN

∗ ∝ σ3. Moreover the outflow criterion LAGN ∝ σ4 can be applied to
further predict that ṀAGN∗ ∝ (LAGN)3/4.

The star formation luminosity is predicted to be of order Lstellar ≈
Ṁ∗εnucfcore, where fcore is the mass in nuclear-burning stellar cores and
εN ≡ εnuc is the nuclear-burning efficiency. This is best deduced empirically:
e.g. for submillimeter galaxies the median IR (8-1000μm) luminosity is 1012L�
and the median star formation rate is 1000M�/yr, yielding the conversion fac-
tor εN = 3.8×10−4. We can now estimate the ratio of AGN to star formation
luminosity in a forming galaxy, namely

LAGN/LAGN∗ ≈ σ2

cvjet

fEddfb
εεN

∼ 1 .

These represent predictions for ultraluminous star-forming galaxies at high
redshift that should eventually be verifiable: the star formation rate is pro-
portional roughly to the cube of the virial (or roughly wind) velocity and also
to the 3/4 power of the quasar luminosity.

4.11.1 ULIGs and Spheroid Formation

If the preceding ideas have some validity, the ULIG/ULIRG phenomenon
involves both spheroid formation and SMBH growth associated with the
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gas-rich proto-spheroid phase. The superwinds are AGN momentum-driven
and are self-limiting, with the rate of mass ejected inevitably being of order
the star formation rate. The SMBH-triggered associated outflows generate the
MSMBH ≈ 106σ4

7M� relation, where σ7 denotes the spheroid velocity disper-
sion in units of 100 km/s. This is in fact the observed correlation between
MSMBH and σg in both slope and normalisation, naturally cutting off above
109 − 1010M� [54].

Supernova-triggered galactic outflows are prevalent until σgas ≈ 100km s−1;
at larger gas turbulence velocities, black hole outflow-initiated outflows must
dominate. Eventually, the input of energy must be highly disruptive for the
protogalaxy. When the SMBH is sufficiently massive, its Eddington-limited
outflow drives out the remaining protogalactic gas in a wind. This curtailing
of spheroid growth allows one to understand the quantitative correlation be-
tween SMBH mass and the spheroid gravitational potential [41]. Such negative
feedback has been extensively applied in semi-analytic galaxy formation sim-
ulations to stop the gas cooling that otherwise results in excessive star forma-
tion in massive galaxies [42, 43]. However the possibility of positive feedback
has not hitherto been implemented. In the positive feedback model advocated
here, star formation triggered by the jet outflow occurs on a time-scale tj that
is much less than the dynamical time-scale or crossing time tdyn associated
with disk gravitational instability-induced star formation. This boost in star
formation rate (and hence efficiency) can help account for observations of both
ULIRGs and old stellar populations in massive galaxies at high redshifts.

4.12 Observing Cold Dark Matter: Where Next?

There is a motivated dark matter candidate, the lightest stable SUSY particle
under R parity conservation, or WIMP. As yet, direct detection experiments
have not found any unambiguous evidence for its existence. The Milky Way
halo provides a laboratory par excellence for indirect WIMP searches via
annihilations into high energy particles and photons.

The relic WIMP freezes out at nχ < σannv > tH <∼ 1, corresponding to a
temperature T <∼ mχ/20k. The resulting CDM density is Ωχ ∼ σweak/σann.
Halo annihilations of the LSSP occur into γ and ν, as well as p̄, p and e+, e−

pairs. In fact, halo detectability may require clumpiness 〈n2〉/〈n〉2 ∼ 100.
SUSY modelling of parameter space supplies the relation between σann and
mχ. There is an uncertainty of some 2 orders of magnitude in the annihilation
cross-section at specified WIMP mass. The WIMP mass most likely lies in the
range 0.1–10 TeV, and annihilations provide possible high energy signatures
via indirect detection for astronomy experiments. The only claimed evidence
for direct detection relies on annual modulation in the DAMA NaI scintillation
experiment, which is marginally viable for a spin-independent annihilation
cross-section and a low WIMP mass (∼ 1 − 10GeV) [57]. The uncertainties
are large however, and improved data is urgently needed to assess these issues.
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One can envisage progress on a variety of fronts. In particle theory, one
can readily imagine more than one DM candidate. Why not have 2 stable
dark matter particles, one light, one heavy, as motivated by N = 2 SUSY?
If one took the light dark matter and any of the possible heavy dark mat-
ter detections seriously, one could have a situation in which the light (a few
MeV) spin-0 particle is subdominant but a ∼ 0.1− 100 TeV neutralino is the
dominant relic [58].

Because a neutralino of mass >∼ 1 TeV is beyond the range of the LHC
or even the ILC, astrophysical searches for DM merit serious consideration
and modest funding. In direct detection, one might eventually hope to see a
modulated signal, due to the effect of the Earth’s motion through directed
streams of CDM [59]. The streams are generic to tidal disruption of dark
matter clumps. As for indirect detection, the prospects are exciting, because
of the many complementary searches that are being launched. Evidence of
neutralino annihilations may come from searches for γ, ν, e+ and p̄ signa-
tures. Experiments under development include HESS2, MAGIC, VERITAS,
GLAST (γ-rays), ICECUBE, ANTARES, KM3NET (ν), and PAMELA and
AMS (e+, p̄). Targets include the Galactic Centre, the halo and even the sun,
where neutralino annihilations in the solar core yield a potentially observable
high energy neutrino flux [60].

Refined numerical simulations will soon explore the impact of supernova
and SMBH-driven outflows and bar evolution on the distribution and espe-
cially the concentration of CDM. A better understanding of intermediate mass
black holes as well as the SMBH in the Galactic Centre could eventually pro-
vide “smoking guns” where spikes of CDM were retained: the enhanced neu-
tralino annihilations measure CDM where galaxy formation began, 12 Gyr
ago. Fundamental physics could be probed: for example a higher dimensional
signature, Kaluza-Klein dark matter, would have a spectral signature and
branchings that are distinct from those of neutralinos. The prospect of multi-
TeV dark matter is another tantalising probe. This provides a challenge for
SUSY but is possibly a natural and fundamental scale for any stable relics
surviving from n=3 extra dimensions.

4.13 Summary

Galaxy formation is still poorly understood despite its apparent successes.
There is no fundamental theory of star formation. One can adopt various
empirical parameters and functions, incorporate plausible assumptions and
prescriptions and add new ingredients until satisfactory explanations are ob-
tained of any specified observations. Beautiful images are often simulated at
such vast cost in computer time that it is impossible to test the robustness of
the favoured location in multidimensional parameter space.

Dark matter searches are not in a much healthier state. They rely on
plausible assumptions about the dark matter candidates and on the theory of
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gravity. There is a vast parameter space that admits undetectable particles,
such as the gravitino. One has to hope that the likely culprit has electromag-
netic couplings.

This is the down side. Bayesians would abandon hope at this juncture, and
argue that more science return per dollar will come, for example, by sending
men to Mars. Yet to conclude on a more positive note, there is every prospect
that potential advances in supercomputers, with virtually no limit to the size
of future simulations, will allow us to reproduce our local universe in detail,
thereby providing a firmer basis for extrapolation to the remote past. And this
extrapolation could be largely phenomenological, driven by the data flow from
ever larger and more powerful telescopes that peer further into the universe
and hence into our past.

Likewise, the forthcoming LHC and the eventual construction of the ILC
will pose tighter constraints on the underlying particle physics that provides
the infrastructure for speculations about dark matter. With any luck, super-
symmetry will be discovered, thereby setting dark matter candidates on a far
firmer footing. And the complementary experiments in direct and in indirect
detection should, within a decade, probe all of the allowable SUSY parameter
space.

This is an exciting moment in cosmology. We are at the threshold of con-
firming a standard model, which seems boring and even ugly. Yet the the
prospect beckons of finding new physics in the unexpected deviations from
the model. A convergence of particle physics and astronomy, in experiment
and in theory, will inevitably lead us onto uncharted territory. There can be
no greater challenge than in deciphering what awaits us.
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Abstract. This lecture is an introduction to cosmological tests with clusters of
galaxies. Here, I do not intend to provide a complete review of the subject, but
rather to describe the basic procedures to set up the fitting machinery to constrain
cosmological parameters from clusters, and to show how to handle data with a
critical insight. I will focus mainly on the properties of X–ray clusters of galaxies,
showing their success as cosmological tools, to end up discussing the complex ther-
modynamics of the diffuse intracluster medium and its impact on the cosmological
tests.

5.1 Introduction

This lecture concerns a classic topic of observational and theoretical astro-
physics: investigating the global properties of the Universe by looking at its
large scale structure. In particular, we are interested in using our knowledge
on the physical properties of clusters of galaxies and their distribution with
mass and cosmic epoch to put constraints on the cosmological parameters,
namely the matter density parameter Ω0 and the dark energy component
(parameter w or, in the simplest case w = −1, the cosmological constant Λ).
Our journey will be a round trip: starting from a simple theoretical approach,
we will build a powerful tool to interpret the data and measure the cosmolog-
ical parameters, but then, we will be forced to go back to theory for a more
complex approach to the physics of clusters of galaxies.

The theoretical starting point (Sect. §5.1) provides a reasonable frame-
work to understand the formation and evolution of clusters, which are the
most massive bound and quasi–relaxed objects in the Universe, in a cosmo-
logical context. The observational part (Sect. §5.2) will focus mostly on X–ray
observations, which offered the most important observational window for this
kind of test for the last 15 years. As often happens in astrophysics, we will
find that the increasing quality of the data sheds light on a situation much
more complex than previously thought. The most recent data, collected in
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the last five years by the Chandra and XMM–Newton satellites, calls for a
much deeper understanding of the physics of baryons in clusters of galaxies,
forcing us to reconsider the basic physical ingredients to make a more robust
connection between clusters and cosmology (Sect. §5.3). This effort is worth,
since clusters are an invaluable tool for cosmology, and they can significantly
constrain the cosmological parameters in a way which is complementary to the
other classic cosmological tests (the Cosmic Microwave Background, hereafter
CMB, and Type Ia Supernovae, SneIa).

5.2 Clusters of Galaxies in a Cosmological Context

5.2.1 What is a Cluster of Galaxies

We start with a simple definition of what is a cluster of galaxies. The simplest
approach is to identify a cluster as an overdensity in the projected distribution
of galaxies in an optical image. The first catalog was indeed a compilation of
galaxy concentrations found by eye in optical images [1]. Today, the quality of
optical images, especially that from the Hubble Space Telescope, are such that
bright (or, in terms of galaxies, rich) clusters of galaxies are among the most
spectacular objects of the extragalactic sky. In Fig. 5.1, first panel, we show an
optical image of Abell 1689, a massive cluster at redshift z = 0.18. The bright,
yellowish galaxies are the massive ellipticals which typically populate the inner
part of rich clusters. In this image it is also possible to see background galaxies
distorted by gravitational lensing.

However, the stars in the cluster galaxies, visible in the optical light, are not
at all the dominant mass component. The X–ray image of Abell 1689 obtained
with the Chandra satellite (second panel of Fig. 5.1) shows the distribution of
hot gas, which is the dominant baryonic component. The total mass, anyway,
is dominated by the non–baryonic component called dark matter (see the
reconstructed distribution in the third panel). To review the properties and
the hypothesis on the nature of the dark matter see [29]. Here we need to know
only that dark matter is collisionless and that it dominates gravitationally
large objects like groups and clusters of galaxies.

To be more quantitative, the composition of a cluster of galaxies is roughly
as follows: 80% of the mass is in dark matter; 17% in hot diffuse baryons,
the so–called IntraCluster Medium (ICM); 3% in the form of cooled baryons,
meaning stars or cold gas. The total mass of clusters ranges from few×1013M�
(small groups) to more than 1015M�. While the baryonic components can be
directly observed (mainly in the optical, infrared and near infrared bands
for the stars and in the X–ray band for the ICM), the dark matter can be
measured only through the effect of gravitational lensing on the background
galaxies or by other dynamical properties of clusters. Needless to say, the total
mass of a cluster is the fundamental quantity we need to know. A useful defi-
nition of the dynamical mass of a cluster will be given after briefly discussing
the physics of gravitational collapse.
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Fig. 5.1. The rich cluster of galaxies Abell 1689 (z = 0.18). The three images show
the three main components in terms of mass. In order of increasing mass fraction,
from left to right: an optical image (stars) taken with the Hubble Space Telescope
(credits ACS Science Team, ESA NASA); an X–ray image taken with Chandra
(showing the diffuse Intra Cluster Medium); the dark matter map reconstructed
from lensing (after [9])

5.2.2 The Linear Theory of Gravitational Collapse

Clusters form through gravitational collapse, which is driven by dark matter.
This is strongly simplifying our problem, since the dark matter, whatever
it is, must behave as a collisionless fluid, and therefore it is not affected by
dissipative processes, unlike the baryons, which are pressure supported, and
experience radiative cooling. Since we are interested in the total mass, we can
neglect, on a first instance, the physical processes affecting only the baryons.

To describe the evolution of a collisionless fluid under its own gravity, we
can use the Eulerian equations of motion describing a perfect fluid assuming
spherical symmetry (continuity, Euler and Poisson equations, see [21]:

∂ρ

∂t
+ ∇ • (ρv) = 0 (5.1)

∂v

∂t
+ (v •∇)v +

1
ρ
∇p + ∇φ = 0 (5.2)

∇2φ = 4πGρ , (5.3)

where ρ is the density field, v is the velocity field, p is the pressure and φ is the
gravitational potential generated by the density field itself. We are interested
in how the density evolves with time. First, we consider small positive density
perturbations with respect to a uniform and static background with density
ρ0, so that we can easily linearize the system of equations. We define our
interesting variable as the overdensity δ ≡ (ρ − ρ0)/ρ0, and assume that the
unperturbed solution is a static background, ρ = ρ0 = const1. We just need a
little algebra to linearize the equations and derive the solution for the density
1 This is not correct since the Poisson equation is not satisfied; however this as-

sumption, called the Jeans swindle, leads to correct consequences.
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contrast in terms if its linear components δk = A exp[−ikr + iωt]. After
defining the sound speed as v2

s ≡ (∂p∂ρ )adiabatic, the solution can be written as
follows:

δ̈k = (4πGρ0 − v2
sk

2)δk , (5.4)

or, in a very familiar way, δ̈ = −ω2δ. The solution is therefore an harmonic
oscillator with dispersion relation ω2 = v2

sk
2−4πGρ0. Note that for dark mat-

ter, vs is substituted by the velocity dispersion of the collisionsless particles
v∗. When ω2 is negative, the solution behaves exponentially. This qualitative
result is largely expected in this extremely simplified situation: in a static
background, the gravitational force is proportional to the overdensity itself,
and the gravitational instability evolves rapidly. The dispersion relation de-
fines a length scale ∼ 1/k for which the perturbation is unstable.

However, we are interested in the realistic solution in an expanding back-
ground. This can be obtained by substituting a varying background density
ρ0 = ρ0(t0)R−3(t) in the equations, where R(t) is the scale factor satisfying
the usual Friedmann equation. The expansion of the Universe is conveniently
expressed trough the fractional growth of R(t) which is the Hubble function
H(t) = Ṙ/R. The solution of the linearized problem satisfies:

δ̈k + 2
Ṙ

R
δ̇k +

(
v2
sk

2 − 4πGρ0

)
δk = 0 . (5.5)

The additional term 2 ṘR δ̇k changes considerably the qualitative behaviour of
the solution, depending on the behaviour of R(t). To show a specific example,
we adopt R ∝ t2/3, or Ṙ/R = (2/3)(t/t0)−1, appropriate for an Einstein–de–
Sitter Universe (EdS, Ω0 = 1), to find:

δ̈k +
4
3t

δ̇k −
2

3t2
δk = 0 (5.6)

(note that here we assumed a negligible vs or v∗ as appropriate for Cold Dark
Matter). The growing mode solution is δ+(t) = δ+(ti)(t/ti)2/3. Therefore, in
an EdS Universe, we have the remarkably simple result that the linear growth
of a density perturbation is proportional to the expansion factor (1 + z). One
may wonder why we show the solution for Ω0 = 1, while we are here in this
School to learn that dark energy is the dominant component in the Universe,
while the matter component is Ω0 ≤ 0.3. The fact is that the case for Ω0 = 1
gives simple analytical solutions, an occurrence that contributed substantially
to the success of the EdS Universe until the early 90s, when observational
evidences started to point towards a low matter density, making room for the
debout of dark energy.

More in general, we find that the fastest is the expansion, the slowest is
the linear growth of perturbations. The link between the expansion rate of
the Universe and the rate of collapse of density perturbations is strongest
at the largest scales. This is because large–scale perturbations are the last
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to leave the linear phase, while smaller scales (the one from which galaxies
form, e.g.), collapsed earlier. This, in turn, is a consequence of the shape of
the primordial spectrum of the density perturbations, and it is true in any
cold dark matter (CDM) dominated Universe. We will discuss this aspect in
greater detail later.

5.2.3 Non Linear Evolution of Density Perturbations
and Virialization

Now we have a simple framework which allows us to compute the linear phase
of collapse of a spherical density perturbations in an expanding universe.
However, our final goal is to describe clusters of galaxies, which are definitely
non linear (and non–spherical, but spherical symmetry is too convenient to
be dropped!). In addition, we need to define accurately the total dynamical
mass of a relaxed object. Should we abandon the simple linear treatment to
look for a more complex and computationally heavier approach? Luckily for
us, we can define a relaxed object in terms of the same parameters entering
the linear theory, as shown in the following pages.

Thanks to the Birkhoff theorem, we can ignore what is outside a pertur-
bation, and we can describe a uniform spherical (top–hat) perturbation like a
sub–universe with a density larger than the critical one Ω ≥ 1. Such a universe
would expand and recollapse in a finite time. If we consider a spherical shell
encompassing the overdensity, we can use the Friedmann–Robertson Walker
(FRW) model for the evolution of each shell in a parametric form:

R =
GM

2E0

(
1− cos(η)

)
, t =

GM

(2E0)3/2
(
η − sin(η)

)
. (5.7)

The maximum of the expansion radius defines the turn–around time, which
is the epoch when the shell starts to collapse, after decoupling from the cosmic
expansion. Due to the symmetry of the solution, the time of collapse is twice
the turn–around time. In our spherical approximation, the collapse ends into a
singularity. What is actually happening to a real, non–spherical perturbation,
is that the different shells cross each other and start oscillating across the
center. However, we can bravely assume that, by that time, the perturbation
(meaning all the mass included in the outermost spherical shell) is evolved
into a spherical, self–gravitating virialized halo.

A virialized halo is a region of space where matter is gravitationally bound,
and where a statistical equilibrium between the potential and the kinetic
energy is established. Every mass component participates to the equilibrium:
both the diffuse, ionized gas, the galaxies, and the dark matter particles,
have random velocities described by a maxwellian distribution with the same
temperature. The virialization condition in its simplest form reads 2T+U = 0,
where T = Mtot〈v2〉/2 is the average kinetic energy per particle, and U =
−GM2

tot/Rc is the average potential energy. Energy conservation argument
fix the relation between mass and the characteristic radius Rc of the halo,
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so that the virial theorem effectively establish a one–to–one correspondence
between the total dynamical mass and the virial temperature.

Going back to the linear solution, how can we describe the formation of
virialized halos in terms of the linear solutions? From Fig. 5.2, we learn that
virialization is flagged by the recollapse of the outermost shell. The value of
the linear δ at the time of collapse depends on the cosmic expansion rate, and
therefore on the cosmological parameters. Thus, the linear value of the over-
density can be used as a flag for collapse, providing a simple and convenient
criterion to decide when a perturbation is virialized.

If we assume that the radius of the virialized halo is about half of the radius
of maximum expansion, the reader should be able to derive the actual average
density contrast within the virialized halo with respect to the ambient density,
as well as the linear value of the density contrast at the time of collapse. This
can be left as a useful exercise, in the simple case of an EdS universe (see
[28] for the solution and much more on cosmic structure formation). It turns
out that the linear threshold for collapse in an EdS universe is δc0 = 1.686,
while the actual density contrast of a virialized halo is Δvir = 178. These
numbers, particularly the linear threshold, generalized for different choices
of the cosmological parameters, will be relevant for the following analysis.
One may wonder how few magic numbers can describe a plethora of complex
physical processes. However, as we will see, these numbers allow us to make
several predictions, whose reliability is supported by numerical experiments.
We have many reasons to proceed confidently.

R

Rmax

Rvir

fturn 2fturn f

Fig. 5.2. The evolution with time of a top–hat perturbation. The upper curve
is the expansion of the exterior mass shell, while the closed curve is the solution
which behaves like a closed FRW model. The wavy curve is the radius of a realistic
perturbation which bounces back and virializes after few oscillations (from [28])
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5.2.4 Clusters of Galaxies Reflect the Expansion Rate
of the Universe

As we saw, the expansion rate of the Universe, entering (5.5), affects the evo-
lution of the linear perturbations. It follows that the growth of a perturbation
is slower when the expansion is faster. The Hubble parameter in its general
form writes H(z) = H0[Ω0(1+z)3+Ωk(1+z)2+ΩΛ(1+z)3+3w]1/2, where w is
the ratio between the pressure and the energy density in the equation of state
of the dark energy component [10]. The special case w = p/ρ = const = −1
corresponds to the quantum vacuum energy, aka the cosmological constant.
We find that in a low density Universe the expansion is faster than in the
EdS case, so we expect that clusters form much later for the same initial
conditions. We have a situation more similar to a low density Universe in
the case of a flat Universe with cosmological constant. This last case is the
favorite choice, since today many observational evidences tell us that the
Universe is accelerating (as shown in several lectures at this School), and
in the context of general relativity, this can be explained by the presence of
dark energy.

Therefore, if we set the initial conditions and the cosmological parameters,
we can predict the redshift when virialized halos of a given mass are expected
to form. At this point we can reverse the problem: given a measure of the
initial conditions (the fluctuations in the CMB are providing them at a redshift
z ∼ 1500) and after counting clusters of galaxies at each redshift, we can infer
the expansion rate of the Universe and therefore the cosmological parameters.
Clusters are much more useful for this kind of test than, e.g. galaxies, since
they are the largest virialized structure in the universe, therefore the closest
to the initial linear spectrum of density perturbations and most affected by
the expansion rate.

To play this game, obviously we should not focus on single objects, rather
we should measure the evolution of the number density of clusters with the
cosmic epoch and their distribution with mass. Let’s see this in detail.

5.2.5 Where Cosmological Parameters Enter the Game

We are interested in the statistical properties of the initial conditions, in other
words, to the average value of δ on a given scale. Since the majority of in-
flationary models predict that the fluctuations in the density field ρ should
be Gaussian, we need to know only its variance. To define operationally the
variance on a given scale, we can imagine to smooth the linear field by mea-
suring the overdensity around each point in space within a sphere of radius R
(the top–hat filter function). Since the density field is linear, a spatial scale
is related to a mass scale simply by M = (4π/3)ρ0R

3 where ρ0 is the aver-
age density. If we express the fluctuations field in terms of its Fourier power
spectrum P (k), the variance reads:
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σ2(M) =
1

8π3

∫
W 2(kR)P (k)d3k , (5.8)

where W (kR) is the filter function in the Fourier space. The filter function
corresponding to a top–hat in real space is oscillating due to the sharp edges
(see [28, 29]). Since every mode grows independently from each other in the
linear regime, we expect that 〈δ〉 is proportional to the linear growth factor
D(t). If we call δc the critical value corresponding to the collapse, the epoch
of collapse of an overdensity of a mass M is implicitly defined by the relation:

σ(M)D(zcoll) = δc . (5.9)

The linear growth factor D(z), which we know since it is the solution of (5.5),
can be written in a generic cosmology as follows (see [36]):

D(z) =
5
2
Ω0E(z)

∫ ∞

z

1 + z′

E(z′)3
dz′ , (5.10)

where E(z) ≡ H(z)/H0. In the general case it is not possible to invert analyt-
ically (5.9). Again, since we are still in the theoretical mood, we can assume
the EdS case and enjoy its analytical formulae (as you see, simplicity some-
times attracts theoreticians against any evidence!). Another useful step is to
approximate the linear spectrum of the density perturbations with a power
law, P (k) ∝ kn with n � −1;−2. In this case, from 2(40), σ(M) ∝M−a with
a = (n + 3)/6 > 0. Since the linear growth is D(t) = (t/t0)2/3 = 1/(1 + z),
we easily can invert the condition D(t)σ(M) = δc to obtain the typical mass
which is collapsing at a given epoch:

Mc(t) = Mc0(t/t0)
4

n+3 . (5.11)

Here we meet a fundamental property of any model based on CDM: the hier-
archical clustering. For any σ(M) which is decreasing with mass (which implies
a > 0, or n > −3), more massive objects form at later times. The hierarchical
clustering, i.e. the progressive assembling of larger and larger structures with
cosmic time, is the direct consequence of this property. Actually, the preferred
choice is the spectrum for adiabatic fluctuations in a CDM universe, and it is
the result of a detailed computation involving fluid equations for relativistic
and non–relativistic components in an expanding universe (see the software
CMBFAST, http://cmbfast.org/, by U. Seljak and M. Zaldarriaga). Unsur-
prisingly, a realistic CDM spectrum is not as simple as a power law. The
resulting σ(M) shows a varying slope as shown in Fig. 5.3.

Before ending this section, we remark that few years ago, the hierarchical
clustering hypothesis was not so radicated into cosmological models. Imagine
that we have a kind of dark matter which has no power at all at small scales.
From 2(40), it is easy to see that σ(M) = const below some threshold M <
Mth. As a consequence, all the scales with M < Mth collapse at the same
time. If Mth is large enough, let’s say the scale of a cluster of galaxies, then
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Fig. 5.3. The typical value of the linear fluctuations σ(R) predicted for an Ω0 = 0.3,
ΩΛ = 0.7 Universe compared with the values obtained from observations on different
scales (from Tegmark 2002 [53]. See lectures by W. Percival for constraints from
SDSS, and by R. Caldwell for constraints from the CMB)

clusters form at the same time or even before galaxies. This is the situation we
have when we consider light particles like massive neutrinos as candidates for
dark matter. Now we know that neutrinos give a negligible contribution to the
density of the Universe (see [31]). Given the success of the CDM spectrum in
reproducing observations on several scales (as shown in Fig. 5.3) the common
wisdom is that cosmic structures follow hierarchical clustering, at least as far
as dark matter is concerned (but beware of the baryons!2).

5.2.6 The Mass Function

Now we can predict the typical mass scale which is virializing at a given
redshift. Is this enough to efficiently constrain the cosmological parameters?
2 As a further complication, there are now strong hints that massive galaxies form

earlier than smaller ones, and bright quasars peaks earlier than weaker AGN. This
anti–hierarchical behaviour of the stellar mass component and nuclear activity
could, in principle, be reconciled with the hierarchical clustering of dark matter
halos. But this is a debated issue, known as the hierarchical versus monolithical
controversy. People use to get very aggressive on this topic.
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Not yet: we can work out much better observables which will allow us to
perform efficient cosmological tests. The important step we have to take now
is to derive the mass function. To do that, first we must write the probability
distribution of the fluctuations δ, which we already assumed to be a Gaussian
with dispersion σ:

P (δ) =
1√
2πσ

exp{1
2
δ2/σ2} . (5.12)

Since we are dealing with a linear field, it seems safe to say that the fraction of
mass which is in regions with overdensity larger than a given δ, is equal to the
fraction of volume that, filtered with our top–hat filter of size R, is overdense
above the same threshold. This fraction is simply the integral of the Gaussian
from the overdensity threshold up to infinity. If we set δc(z) = δc0×D(0)/D(z),
we obtain the fraction of mass which is in virialized halos at a given epoch z.
This condition reads:

N(M)MdM =
∫ ∞

δc(z)

P (δ, σ(M))dδ , (5.13)

where N(M) is the number density of virialized halos in the mass range M
and M + dM . Then we can obtain an expression for N(M) simply deriving
the integral on the right hand side with respect to mass:

N(M) =
ρ

M

d

dM

∫ ∞

δc(z)

P (δ, σ(M)) . (5.14)

Our tidy theoretical attitude is rewarded again: the solution is analytic. Leav-
ing the mathematics to the reader, we write the final, famous result, the [42]
(PS) mass function (1974):

N(M) dM =

√
2
π

ρ

M

δc(z)
σ2

dσ

dM
exp

(
− δc(z)2

2σ2

)
dM . (5.15)

Its typical shape is characterized by a power law at low masses, and an
exponential cutoff at large masses. Given its simplicity, its success is often
referred as the Press & Schechter miracle.

5.2.7 Is the Press & Schechter Approach Accurate Enough?

Unfortunately miracles are not allowed in science. You may think that this
approach is just a didactical exercise to understand the basic concepts, while
cosmologists actually use terribly complicated formulae or awfully long numer-
ical computations for the mass function. Well, the truth is that this formula
is still at the core of the majority of the works deriving cosmological parame-
ters from clusters of galaxies. Indeed, many numerical experiments (N–body
simulations) actually support the validity of the PS approach. Clearly, some
differences with respect to the original PS approach were found. Discrepancies
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are mostly due to the many non linear effects which are not included in the
PS formalism. A recent example of a comparison between N–body and the PS
formula is shown in Fig. 5.4. We note that the PS formula tends to underesti-
mate the number density of halos at very high redshift. However, if we consider
that clusters are observed today up to redshifts slightly above 1, we have to
admire the remarkable similarity with the results from the time–expensive,
brute–force approach of N–body simulations.

To improve the PS model, some empirical fitting formulae were proposed
on the basis on N–body simulations [26]. However, this approach is heavy,
because in principle it requires a new simulation every time the cosmological
parameters are varied. The PS mass function has the great advantage that
the cosmological parameters space can be explored rapidly. Finally, I just
mention here that the PS formalism can be extended to give complete merger
histories of single halos [30], conditional probability function of progenitor
halos [8], biased distribution of halos within halos [35], all topics we do not
explore here, but that proved to be very useful in interpreting data. As a final
comment, the PS approach after more of 30 years, is still extensively used
in the large majority of the papers on precision cosmology with clusters of
galaxies.

5.2.8 From the Mass Function to the Distribution of Observables

Let’s take a closer look to the behaviour of the mass function. We identify
two sets of ingredients: the initial conditions (normalization and shape of the
power spectrum) entering σ(M), and the cosmological parameters (Ω0, ΩΛ, w)
entering δc(z) and the overall normalization of the mass function. As you can
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Fig. 5.4. The Press & Schechter mass function (dotted lines) tested against N–body
simulations (dots and solid lines, from [50])
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easily see, the exponential cut off at the massive end is where the function
is most sensible at both sets of parameters, through the normalization of the
power spectrum (expressed conventionally as σ8, which is the amplitude of
the spectrum at the scale of 8h−1 Mpc), and the linear growth factor. We can
now see in much more detailed terms the behaviour we already appreciated
qualitatively: the evolution of cosmic structures is slower in a universe with
lower density with respect to and EdS universe; the same for a Λ–dominated,
flat universe. In quintessence models, for higher values of the parameter w,
the growth ceases earlier. If we normalize our mass function in order to have
the same local density of clusters today, the evolution with z appears faster
for Ω0 = 1 than for open or Λ–dominated universes. This is shown visually by
the N–body simulation in Fig. 5.5 (upper panel). Quantitatively, the expected

Fig. 5.5. Top: clusters of galaxies (circles) in an N–body simulation for an EdS
universe (bottom panels) compared with clusters in an open FRW universe, with
statistically equivalent conditions at z = 0. The evolution backward in time of
the mass function is strikingly different [6]. Bottom: the evolution of the number
density of clusters with virial mass M > 5× 1014h−1M� for different choices of the
cosmological parameters [45]
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evolution of the number density of massive clusters (with virial mass M >
5×1014h−1M�) is also shown in Fig. 5.5 (lower panel). Now our observational
side can take over, and note that, after all, an EdS universe is not more
appealing than a low density one since, after all, in the last case we expect
much more clusters at high redshifts. And observers love to find high–redshift
objects.

We are almost ready to handle real data, except for a final, small step,
which consists in a simple change of variables. As you know, in most cases we
do not measure directly the virial mass. What an astronomer typically mea-
sures is the emitted light in a given band. In our case, as we will see shortly,
we will focus on measuring the total luminosity L in the X–ray band and the
virial temperature T of the diffuse gas. Therefore, we prefer to have a predic-
tion for the luminosity or the temperature function. This is straightforward
if we have a relation M–L or M–T . We know, from the virial theorem, that
these relations can be obtained from our spherical collapse model. Once we
have the relationships between the observables and the mass, we can write
the luminosity (XLF) and the temperature (XTF) functions as:

Φ(L)dL = N(M)
dM

dL
dL , Φ(T )dT = N(M)

dM

dT
dT . (5.16)

Enough theory.

5.3 From Observations to Cosmological Parameters

5.3.1 The Observer’s Mood

We can start the second part of this lecture, where we will encounter different
kind of problems. We are about to look at data, therefore we will face reality,
which is always somewhat shocking when coming from the ideal, linear and
spherical world of theory.

As we already know, we need a good measure of the actual number density
of clusters of galaxies as a function of mass and redshift. We also know that
we will get the luminosity or, in the best case, the temperature function of
clusters. This implies that we need to be able to: find clusters, measure with
high accuracy the quantity of interest, and define the completeness of our
survey. Completeness is a key quantity in observational cosmology. A well
defined completeness means that, for the solid angle of the sky covered by our
survey, we are able to detect all the objects with luminosity (or temperature,
or mass) above a given value and within a given redshift. This is mandatory
to compute the volume we actually explore in the survey and, therefore, the
comoving number density. Needless to say, a survey with few objects but a
well defined completeness is way much better than a survey with hundreds of
objects but a poorly defined completeness. Therefore, we need a strategy to
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find as many clusters as possible with a well defined completeness. Which is
the best observational window to do that? Let’s start examining some options.

5.3.2 Optical Band

Searching for clusters in optical images is basically counting galaxies and
looking for overdensities with respect to the background value (see [20] for a
review). In doing this, the optical colors of the member galaxies are a very
useful information. Passive, red galaxies preferentially populate the central
regions of clusters, and they form a well defined color–magnitude relation. A
galaxy selection picking the reddest galaxies in the field, helps in reducing
the contamination by the field galaxies. These techniques can give efficient
clusters detection out to z ≥ 1 (see [22]).

Optical surveys are very convenient to find many cluster candidates. We
remind that clusters are rare objects (especially the massive ones) and there-
fore we need to survey large area to find many of them. The optical band
offers the opportunity to cover wide area with large CCD frames, coupled
to the availability of ground–based telescopes with large field of view. How-
ever optical observations have the drawback of a difficult calibration of the
selection function, and therefore the completeness of an optical survey of
clusters is very hard to define. This is because the detectability of a cluster
depends on the luminosity, the number, and the concentration of its galaxies,
three aspects that can vary from cluster to cluster. In addition, projection
effects cause severe contamination from background and foreground galaxies:
filamentary structures and small groups along the line of sight can mimic a
rich cluster. For the same reason, in the presence of a positive fluctuations of
the background galaxies, moderately rich cluster can be missed.

More troubles when we try to relate the optical light to the total mass. The
total optical luminosity of a cluster is somehow proportional to the total mass.
But we know that the stellar mass in the galaxies represents a tiny fraction
of the total, and usually only the brightest galaxies are detected, so that a
lot of stars in small, undetected galaxies must be accounted for, by assuming
a model for the galaxy luminosity function. So, we should not be surprised
to know that the relation between the total optical luminosity of a cluster
and its total mass is very loose. In order to obtain an accurate measure of
the mass, we may use optical spectroscopy to measure the velocity dispersion
of the galaxies and then apply the virial theorem. However, this requires a
lot of observing time, and obviously it is still affected by contamination from
interlopers. All these problems become more severe at high redshift, as the field
galaxy population overwhelms galaxy overdensities associated with clusters. A
completely different technique is to measure the mass directly through strong
and weak lensing (see, e.g. [13]). This is a very promising tool, but it has its
own problems, like severe projections effects (the lensing depends on all the
mass along the line of sight towards the clusters and on its position) and the
difficulty to obtain clean lensing signal.



5 Cosmological Parameters from Galaxy Clusters 139

5.3.3 Millimetric Band (SZ effect)

Among the many virtues of clusters of galaxies, there is this peculiar fea-
ture: clusters can be seen as shadows on the cosmic background radia-
tion. This is due to the Sunyaev–Zeldovich (SZ) effect [51]. We know that
most of the baryons in clusters are in the form of very hot, ionized gas.
Photons from the CMB passing through a cluster find many high–speed
electrons and therefore experience Inverse–Compton scattering. In this pro-
cess, the energy is transferred from the electrons to the much colder CMB
photons. Since this process preserves the number of photons, the net re-
sult is that the black–body spectrum of the CMB is slightly distorted and
shifted to larger frequencies by an amount that depends on the tempera-
ture, and on the column density of the ICM. The net effect on the CMB
is the production of a cold spot at low and a hot spot at high frequen-
cies, where the pivotal frequency is about 217 GHz (see [24]). This sounds
very promising, since we have both a spatial and a spectral signature. Ac-
tually, several clusters have been imaged with the OVRO and BIMA ar-
rays [11]. Indeed, the scientific community is making a strong effort to
build instruments that can study both CMB and the SZ effect from the
ground (like AMI, ACT, AMiBA, APEX, SPT), or from space (like the
Planck satellite, whose full–sky survey is expected to detect thousands of
clusters).

Among the positive aspects of SZ observations, we find the absence of
the redshift dimming, which allows one to identify clusters virtually at any
redshift. This means that the selection criteria are essentially equivalent to a
completeness in mass, which is very desirable. However, severe contamination
from foreground and background radio sources is expected. Multi–frequency
observations can help a lot in disentangling the spectral signature of the SZ
effect from the spectrum of radio sources. However, the difficulties in detecting
clusters via the SZ effect are still significant (see [3]). An easy prediction is
that in five years, the SZ effect will be one of the main observational window
to find and study clusters of galaxies.

5.3.4 X–ray Band

At present, in my view, the X–ray band is the most convenient to find and
investigate clusters. Anyway, it is the field in which I spent most of my activity,
and therefore, for a mix of objective and private reasons, since now on, I will
focus mostly on X–ray.

The first thing to say is that clusters appear as strong–contrast sources
in the X–ray sky up to high redshifts, thanks to the dependence of the
X–ray emission on the square of the gas density (see §5). Given the rela-
tively small number of sources, X–ray images of clusters are virtually free from
contamination from foreground and background structures. In other words,
clusters are the second most prominent sources in the X–ray sky (after Active
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Galactic Nuclei), at striking difference with the optical and millimetric bands
where they have to struggle to emerge above other stronger signals. This can
be clearly appreciated in Fig. 5.6 (left) where almost all the point sources in
the image are AGN, while the bright, extended source in the center is a cluster
at z = 0.79. The image has been taken with the ACIS–I detector, covering
a square of 16 arcmin by side. X–ray emission from clusters can be detected
up to redshift larger than one, as shown in Fig. 5.6 (right) where the X–ray
emission (red) from the z = 1.235 cluster RXJ1252 is shown on top of the
optical image.

A flux–limited X–ray survey can provide a sample of clusters with a well
defined completeness, thanks to the fact that the X–ray emission from clus-
ters is continuous (at variance with the optical emission associated to the
single galaxies) and centrally peaked towards the center. Therefore we just
need to establish a robust connection between the X–ray luminosity and the
total mass. A potential problem with X–ray clusters is that the X–ray flux
is sensitive to irregularities in the gas distribution. However, this problem
does not seem dramatic, given that most of the clusters appear smooth and
round, and the theory provides us with a robust connection between the total
mass and the ICM properties. Thus, for the moment, we just need to fully
appreciate the advantages in looking at clusters with X–ray satellites, which
became possible since the 60s thanks to the first X–ray missions leaded by
Riccardo Giacconi. In the spirit of constraining the cosmological parameters,
X–ray surveys of clusters of galaxies had a large success in the 90s, thanks to
ROSAT and other satellites, and provided consistent but sometimes debatable

Fig. 5.6. Left: The cluster MS1137, z = 0.79, in a field observed for 116 ks with the
X–ray telescope Chandra. The cluster is the bright extended source in the center,
while most of the remaining sources are AGN. Right: the X–ray emission from the
z = 1.235 cluster RXJ1252 is shown on top of the optical image taken with the VLT
telescope [46]
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results. For a review of the many surveys with cosmological impact see the
review by [45].

We are now in the era of the XMM–Newton and Chandra satellites. These
two telescopes are mostly performing pointed observations of clusters discov-
ered in the previous surveys. No wide area surveys are currently planned,
given the small field of view of these satellites (nonetheless, some serendipi-
tous surveys are underway with both of them). These pointed observations are
bringing to us many beautiful images, along with many uncomfortable news
that we will discuss in §3. Before stepping further, let’s remind the basics of
X–ray emission from the ICM.

5.3.5 The X–ray Emission from Clusters of Galaxies

We know that most of the baryons in clusters are in the form of hot plasma.
This plasma is optically thin and it radiates by free–free (bremsstrahlung)
emission. It is in collisional equilibrium, therefore its typical temperature is set
by the large dynamical masses of clusters (1014− 1015M�) to be in the range
of 10–100 millions K (corresponding to 1–10 keV). This implies that most of
the emission is in the X–ray band. The total X–ray emissivity due to thermal
bremsstrahlung is obtained by integrating over the distribution of speeds of
the plasma electrons, and, after a further integration over frequencies, it can
be written as (see [43]):

dL

dV
= 1.4× 10−27 T 1/2 n2

e Z
2 ḡB erg s−1cm−3 , (5.17)

where Z is the atomic number of the ions and ḡB is the velocity–averaged
Gaunt factor averaged over frequencies. First, we notice the dependence of
the total emissivity on the square of the electron density. This is the main
reason why clusters are high–contrast sources in the X–ray sky, and also why
superposition or confusion effects due to smaller background or foreground
halos, are less important than in the optical band, where the total luminosity
scales linearly with the (stellar) mass. We also note the weaker dependence
on the temperature (T 1/2).

Another contribution to the X–ray luminosity comes from the line emission
due to heavy ions. This contribution is generally negligible in terms of total
emission, since at temperatures larger than 5 keV, almost all the heavy nuclei
are fully ionized. However, the line–emission contribution is increasing at low
temperatures, and starts to be relevant below 2 keV. This aspect is important
when studying the production of metals in cluster galaxies and their diffusion
into the ICM. A typical X–ray spectrum of a cluster, with the typical Iron
line at 6.7 keV rest–frame, is shown in Fig. 5.7 (right).

Equation (5.17) gives the luminosity per unit volume, therefore, the total
luminosity must be obtained by integrating up to the virial radius. In the
simplest assumption of isothermality (kT = const at any radius in the cluster),
the only relevant quantity is the square of the electron density n2

e(r), which
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Fig. 5.7. The spectrum of MS2137 observed with ACIS-I onboard of the Chandra
satellite. MS2137 is a bright X–ray cluster at z=0.313, with an average temperature
of about 5 keV

is generally assumed proportional to the gas density ng. In general the gas
density profile is described with the so–called β–model [12], which consists in
a flat central core and a steep decrease in the outer regions:

ng ∝ 1/(1 + (r/rc)2)3β/2 , (5.18)

where rc is the core radius, and the parameter β ∼ 0.5–1 can be interpreted
as the ratio of the specific energy of the dark matter particles (often measured
through the galaxies velocity dispersion) over the gas temperature. Given the
steep slope outside the core, and the n2

g dependence of the luminosity, only
the central regions (few core radii) are clearly detected in the X–ray images.
The outer regions are hardly detected even with present–day satellites. Ob-
servers often prefer to quote all the quantities within the observed radius,
which is typically half or less than the virial one.

As we know, X–ray detectors onboard of the Chandra and XMM satellites
are CCD cameras, which read the collected photons every few seconds, record-
ing both the position and the energy (with a reasonable error of few percent).
Therefore X–ray astronomy has the big advantage of recording images and
spectra at the same time. High resolution X–ray spectroscopy is still feasible
through gratings, however the energy resolution of the CCD is good enough
to our purposes of measuring the temperature of the baryons.
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Once we obtain the baryon density from the X–ray surface brightness, and
the temperature of the gas, we can measure the total mass simply by applying
the condition of hydrostatic equilibrium:

M(< r) = −kBTR

Gμmp

(dlog(ρg)
dlog(r)

+
dlog(T )
dlog(r)

)
, (5.19)

where μ is the mean molecular weight (μ ∼ 0.6) and mP is the proton mass
(see [45]). Here we let the temperature free to change with the radius. Of course
this equation is particularly simple in the isothermal case. In general, the
masses obtained in this way are pretty close to that obtained simply through
the virial theorem T ∝M2/3. On the other hand, it is well known that clusters
do have a temperature structure, which is often well described by a mild
decrease outwards (see [57]), and, in more than half of the local clusters, a drop
of about a factor of three in the very inner regions (the cold core, see [38]). The
temperature profile is quite important, but its measure is increasingly difficult
at increasingly high redshifts. Indeed, we need a lot of photons in order to
measure the temperature in several concentric regions (at least one thousand
for each independent spectrum), and to obtain the deprojected temperature
profiles. For this reason, virial masses of distant clusters are often derived
assuming isothermality.

Our framework allows us to relate the basic X–ray observables, luminosity
and temperature, to the dynamical mass. We already know that luminosity is
more affected by the details of the gas distribution, while the M–T relation
appears more stable since it is directly based on the virial theorem. But we
also know that luminosity is much easier to measure, since we need much less
photons to measure a luminosity, and therefore we can observe many more
clusters within a given amount of telescope time. A shortcut is to build phe-
nomenologically the L–T relation, fitting the data with a formula of the kind:

Lbol = L6

( TX
6keV

)α
(1 + z)A

( dL(z)
dL,EdS(z)

)2

1044h−2ergs−1 , (5.20)

where α is measured to be about 3, while the evolutionary parameter A is
more uncertain and varies between 1 and 0 (see [17, 55]). Once the relations
between the X-ray observables and the mass are established, we can compare
the observed XLF and XTF to our predictions. For a review of the X–ray
properties of X–ray clusters, see the book by [46].

5.3.6 Measuring Ω0 from the Observed
X–ray Luminosity Function

The luminosity function seems easy to measure: first we count all the clusters
in our survey, then we measure their flux just counting the photons from each
cluster. We also have to know the redshift of each cluster with a good approx-
imation, in order to compute luminosities. The redshift can be obtained with
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an optical spectroscopic follow–up on a limited number of member galaxies, or
with photometric techniques. As noted before, shallow X–ray surveys allows
us to measure the luminosity with good accuracy, and to scan a wide area of
the sky. Once we have a flux limited sample with measured luminosities, we
build the XLF by adding the contribution to the space density of each cluster
in a given luminosity bin ΔL:

φ(LX) =
1

LX
Σn
i=1

1
Vmax(Li, flim)

(5.21)

where Vmax is the total search volume defined as:

Vmax =
∫ zmax

0

S[f(L, z)]
( dL(z)

(1 + z)

)2 c dz

H(z)
, (5.22)

where S(f) is the sky coverage, which depends on the flux (since the sensitivity
of a survey can vary across the surveyed region of the sky), and dL(z) is the
luminosity distance.

Remember that we expect to get information on the cosmological param-
eters both from the shape of the XLF and from its evolution with redshift. To
begin with, the shape of the local XLF is well understood thanks to several
different surveys giving consistent values, and it is shown in Fig. 5.8 (upper
panel). This allows already to get some information from the data at z = 0,
by finding the parameters which minimize the χ2 computed on the binned
luminosity function from (5.21), or by a maximum–likelyhood approach using
the unbinned data (see [5]).

However, when only local data are used, we find a lot of degeneracy among
cosmological parameters. Lower Ω0 can be compensated by higher spectrum
normalization σ8 (see Fig. 5.8, lower panels). To break this degeneracy we
can use the evolution with redshift. The evolution of the XLF is still debated:
there is a hint of evolution at the very bright end, but for the typical L∗
clusters and less luminous ones, there is no evolution almost up to z ∼ 1 (see
discussion in the review by [45]. In other words, most of the clusters, if we
exclude the brightest ones, are already in place at high redshift. We know
what does it mean, at least qualitatively: the matter density parameter Ω0 is
significantly lower than 1.

Our group, few years ago, applied this cosmological test to the RDCS
survey [44], which is the deepest sample of X–ray selected clusters. This choice
provide a good leverage in terms of cosmic epoch, but necessarily, given the
relatively small solid angle surveyed with respect to shallower surveys, does
not probe well the high luminosity end. The results, published by [4, 5] are
shown in Fig. 5.9, where we used also data from the EMSS survey [21]. In
these Figures we notice that some degeneracy is still present also when fitting
the XLF in the high redshift bins. We also notice that the constraints on the
cosmological parameters Ω0 and σ8, are weakened when the parameters α and
A, describing the slope and evolution of the L–T relation, are allowed to vary
within the observational uncertainties.
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Fig. 5.8. Upper panel: the local X–ray luminosity function of clusters of galaxies
from different samples computed for an EdS Universe with H0 = 50 km s−1 Mpc−1

[45]. Lower panels: the local X–ray luminosity function of clusters of galaxies from
RDCS (filled circles) and BCS (open circles) for different σ8 and different parameter
α for the slope of the L–T relation [4]
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Fig. 5.9. The X–ray luminosity function of clusters of galaxies in three different
redshift bins: z=0.3–0.6 (EMSS data); z=0.25–0.50 and z=0.50–0.85 (RDCS). For
each model and at each redshift, different curves refer to different evolutions for the
L–T relation [4]

The uncertainties on the cosmological parameters are better shown in
terms of confidence contour levels, where we can also evaluate the effects
of the uncertainties associated to the parameters describing the L–T relation.
5In Fig. 5.10 we show how the confidence contours in the Ω0–σ8 space dance
around when the slope and evolution of the L–T relation (parametrized by α
and A like in (5.20)), but also the normalization of the M−T relation (param-
eter β), are allowed to vary. The displacements of the contours are at more
than 3 σ, therefore we are learning uncomfortable news: the uncertainties on
the properties of the ICM are affecting the cosmological tests at a significant
level.

The situation is getting worse when we investigate the dark energy pa-
rameter w. While the density parameter Ω0 is well constrained by clusters,
w is hardly constrained at all. Recent works trying to constrain dark energy,
combine constraints from both SneIa and clusters, to significantly improve
the constraints on w due to the complementarity of the two tests in the Ω0–w
space (see Fig. 5.11).
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Fig. 5.10. Confidence contours in the density parameter Ω0 and the normalization
of the density fluctuations spectrum σ8 from the fit of the high–z XLF for different
choices of the parameters describing the physical relations L–T (α and A) and M–T
(β; [5])

5.3.7 Measuring Ω0 from the Observed X–ray Temperature
Function

At this point you may ask: since our theoretical framework seems quite suc-
cessful, why do we have such large uncertainties in the relations between L
and T ? Not only we showed that the relation between mass and luminosity
is reasonably understood on the basis of the spherical collapse, but we also
mentioned a possible shortcut through the direct measure of the L–T relation.
Well, we knew that something wrong were lurking somewhere... However, be-
fore worrying too much, let’s give a try to the XTF, which is based only on
the more robust M–T relation. Indeed, the M–T relation relies directly on
the virial theorem and it is observed to have smaller scatter with respect to
that observed in the L–T relation.

When using the XTF, the price to pay, as we know, is that it is much
more difficult to assemble a complete sample of clusters with temperatures

Fig. 5.11. Confidence contours (1–3 σ levels for two degrees of freedom) in the Ω0–
w plane obtained from SNeIa only [37] sample, left panel) and SNeIa plus REFLEX
(right panel, from [48])
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measured with reasonable errors. However the XTF is considered to be more
effective in constraining cosmological parameters. The first good news is that
the constraints from the XTF are similar to that from the XLF. The con-
straints obtained from the XTF point towards Ω0 ∼ 0.3 for a flat universe
(see [14]), providing at the same time significant constraints on the normal-
ization of the power spectrum (see [39]). In Fig. 5.12 we show the results from
[15]. We notice the tight constraints, but, again, also a significant degeneration
in the σ8 –Ω0 space.

An additional problem comes from a parameter which we considered, so
far, pretty robust: the normalization of the M–T relation. It has been noticed
that the value of β found in N–body simulations is higher than the observed
one. This can be due to several effects (see [7]), but the net result is that
the uncertainties on this parameter introduce uncertainties in the constraints
from the XTF in the same way as the L–T parameters are weakening the
constraints from the XLF (see, e.g. [25]).

It is clear at this point that the main uncertainties comes from the poor
understanding of the scaling relations between the ICM observables and the
mass, both from the theoretical and the observational points of view. A de-
tailed investigation of the effects of such uncertainties is given in [40]. They
conclude that the cosmological constraints from XLF and XTF, both the local
and the evolved ones, are reliable and consistent with each other, but that the
statistical errors on the cosmological parameters are larger than previously
thought. The buzzword now is: we need to improve the quality of the data
on single clusters to better understand the physics of the ICM. But why did
clusters prove to be such a difficult topic, after being the best candidate for
the most friendly objects in the Universe?

Fig. 5.12. Left: Fit to the evolved temperature function. Right: confidence
contours in the Ω0–σ8 space (from [15])
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5.4 New Physics and Future Prospects

5.4.1 Something is Missing: New Physics for the Clusters Baryons

Why do we have such a poor understanding of the L–T relation? From (5.17),
assuming ne ∝ ρtot (in other words, that the baryons follow the total matter
distribution), and integrating over the volume, we obtain L ∝ T 2 (without
including line–emission). This is the L–T relation predicted in what is called
the self–similar scaling [27]). As long as the baryons are distributed in the
same way of the total mass, each X–ray observable scales like some power of
the mass. Another way to say this, is that small clusters are the mass–rescaled
version of massive clusters.

So far, we reasonably expected that the thermodynamics of the ICM, be-
ing dominated by dark matter, is driven by gravitational processes, like shocks
and adiabatic compression occurring during the virialization phase and the
subsequent growth in mass by accretion. This self–similar behaviour is also
supported by N–body hydrodynamical simulations which do not include radia-
tive cooling. But the observed slope of the L–T relation is much steeper then
predicted (α ≥ 3 rather than 2 or lower when line emission is included) and
it constitutes the first strong evidence of something wrong in the self–similar
picture. That’s why when performing the cosmological tests, we avoided this
inconsistency by varying the parameters of the ICM scaling relations.

However, we learned that thawing the thermodynamic parameters intro-
duces large uncertainties in the cosmological constraints. Obviously, we would
appreciate a lot to have a physical basis for the observed scaling relations,
in order to better control the uncertainties due to a poor description of the
ICM thermodynamics. The first step is to invoke a physical process that leads
naturally to an L ∝ T 3 scaling, in other words, a process which implies a
progressive decrease of the X–ray luminosity at low mass or temperatures,
as shown in Fig. 5.13 (top). How can we obtain this? We know that we can
efficiently decrease the predicted luminosity by imposing a lower density in
the central regions of the clusters. To do that, we simply need to add an ex-
tra pressure, or some extra amount of energy in the center of clusters. Extra
means in excess with respect to the energy acquired through shocks and adia-
batic heating. This extra energy does not translate in an higher temperature;
what happens, is that the pressure increases, and the gas distribution gets
puffier, readjusting itself in the dark matter potential well. A useful quantity
to describe such behaviour is K ≡ T/n2/3. This is the normalization of the
equation of state of the ICM, which is that of a perfect gas, p = Kρ5/3. We re-
mind that the entropy is S = Nln(K). The entropy is also a very convenient
thermodynamic variable, since it is constant during adiabatic compression,
and it changes only in the presence of radiative cooling or shock heating.
For this reason, another way of describing the break of the self–similarity in
clusters, as shown by [41], is to plot the entropy as a function of the cluster
temperature, as shown in Fig. 5.13 (bottom).
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Fig. 5.13. Top: the L–T relation for groups and clusters showing the steeper slope
with respect to the self–similar model L ∝ T 2 (continuous line). Bottom: the
entropy ramp, showing the higher entropy in low temperature systems with respect
to the self–similar model [58]

The desired effect is obtained by giving about half or 1 keV to each gas
particle. The effect is small in rich clusters, where the virial temperature is
around 10 keV, and the energy budget is largely dominated by gravity, while
it is increasingly large at lower temperatures, when the extra energy starts
to be a significant fraction of the gravitational energy scale. In this way we
solved the problem from the point of view of the thermodynamics (see, e.g.
[54]). Of course, the real problem starts now: which is the physical mechanism
responsible for the energy (or the entropy) excess?

We have two obvious candidates which can inject energy associated to non–
gravitational processes: the prime candidate is feedback from star formation
processes, whose effects are testified by the presence of heavy elements in the
ICM. The second candidate is feedback from nuclear activity in the clusters
galaxies. Actually, the interaction of AGN jets and the ICM has been directly
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observed. The most spectacular example is the Perseus cluster, where jets from
the central AGN (visible in the radio emission) is pushing the ICM creating
two large symmetric cavities towards the center ([18, 19]; see Fig. 5.14). Chan-
dra and XMM added other surprises: the presence of cold fronts ( [32, 54]) and
of massive mergers strongly affecting the dynamical equilibrium. To this, we
must add the puzzling discovery by XMM that the ICM in the central regions
never cools down by more than a factor of 3 with respect to the virial tem-
perature, despite the cooling time is much shorter than the age of the cluster.
Again, another evidence that some homogeneous process heats the gas.

Today, we see clearly that the Chandra and XMM satellites changed our
perspective of clusters of galaxies. If in the ROSAT era the main goal was to
find as many clusters as possible with the aim of constraining cosmology, in
the Chandra/XMM era the goal is to observe with much better spatial and
spectral resolution the clusters previously discovered. The physics of the ICM
is much more complex than expected and this forces us to reconsider all the
relations between the X–ray observables and the dynamical mass. This aspect
may cast some doubts on the use of X-ray clusters of galaxies as cosmological
tools. One can also think to reverse the argument: the physics of the ICM
is much more interesting, so let’s investigate the evolutionary properties of
clusters to understand the effects of feedback processes onto the ICM, and
don’t worry about cosmology.

In my view, the investigation of cosmology and of the ICM physics must
proceed together. Actually, this is what is happening: if you go through the
literature in the last six years, you discover indeed that there is still a strong
interest in cosmological tests with clusters, which is supported by a growing
amount of works on the ICM. It must be noticed in addition, that under-
standing the problem of the non–gravitational heating of the ICM by ener-
getic feedback from star formation or nuclear activity, is a key issue in cosmic
structure formation. Actually, feedback is the holy grail of structure formation
today! If you go to a conference on galaxies, clusters, or anything on cosmic
structure formation, you will hear everywhere the word “feedback”. So, rather
than saying that clusters became less interesting in a cosmological perspective,

Fig. 5.14. From left to right: AGN activity creating cavities in the ICM of the
Perseus cluster ([18];[19]); cold fronts in Abell 2142 [33]; an ongoing massive merger
in 1E 0657–56, the bullet cluster [34]
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I prefer to say that clusters became even more important to understand both
structure formation and cosmology.

5.4.2 A Simpler Cosmological Test

There is not enough space here to describe the most recent progress in the
understanding of the ICM thermodynamics. However, I want to mention an-
other cosmological test that appears to be simpler than that discussed so far.
Instead of relying on the knowledge of the dynamics of clusters, we can fo-
cus on a much simple quantity: the baryonic fraction fB. We simply need to
measure the total mass, and count all the baryons in the form of stars and
ICM. From semianalytical models and numerical simulations, we expect that
the physics of the ICM does not affect fB if measured at a radius where the
gravity dominates; therefore, it should be close to the cosmic value ΩB/Ω0. In
other words, the baryons are allowed to behave wildly and decouple from the
dark matter distribution in high density regions, but on large scales they are
not displaced differently from dark matter. The virial radius is expected, then,
to include a closed region where the average composition does not change dur-
ing the evolution of the cluster. It is straightforward to see that the measure
of fB and the knowledge of ΩB from nucleosynthesis or from the CMB [49]
gives a straightforward measure of Ω0 (see [59]).

But this is not all: for the same reasons, the baryonic fraction should not
evolve with redshift. However, the actual measure of fB does depend on the
angular distance. The mass of baryons is recovered by measuring the flux and
by knowing the physical size of the cluster. The relation between the measured
flux SX and the mass of gas reads as:

SX = LX(1 + z)−4/(4πd2
ang) ∝M2

gasθ
−3
c d−3

ang/d
2
ang . (5.23)

On the other hand, the total mass depends on the angular distance as
Mtot ∝ θcdang. It follows that fB = Mgas/Mtot ∝ d

3/2
ang. Thus, we have two

advantages here: the value of the baryon density gives Ω0, while its apparent
evolution is depending on the cosmological parameters through dang. There-
fore, the cosmological test consists in requiring no evolution in the observed
fB. Any apparent evolution in the baryonic fraction is the smoking gun of
wrong cosmological parameters. It is important to perform this test on a red-
shift range as wide as possible (see Fig. 5.15, left).

This is not a dynamical test, but rather a geometrical test, and it is more
sensitive to ΩΛ (see [2]). However, we notice that the scatter in the bary-
onic fraction from cluster to cluster is somewhat larger than we would like,
given the starting assumption of a universal value for fB for all clusters at
all epochs. This is probably due to the fact that the dynamical masses and
the baryonic fraction measures are still affected by complexities in the ICM
physics (see [23]). However, this kind of test is very promising, and it becomes
very powerful when combined with CMB or SNeIa test, as shown in Fig. 5.15
(right).



5 Cosmological Parameters from Galaxy Clusters 153

Fig. 5.15. Left: fB measured for a sample of high–z clusters in an EdS cosmology
(dots) and in a flat Λ universe (empty diamonds, from [16]). Right: constraints in
the w–Ω0 plane obtained by combining baryonic fraction in clusters and CMB [2]

5.4.3 Future Prospects for Precision Cosmology with Clusters

We are approaching the end of our brief introduction to cosmological tests
with clusters of galaxies. A clear way to summarize it, is the cosmic triangle
shown in Fig. 5.16. Each side represents one of the three main parameters: the
mass density, the cosmological constant, and the curvature. Contours levels
perpendicular to one side mean that a particular test is efficient in constraining
that parameter. Cosmological tests based on clusters are mostly sensitive to
Ω0, while geometrical tests like CMB and SNeIa are more sensitive to the
curvature and ΩΛ. Roughly speaking, CMB can constrain Ω0 + ΩΛ, while
SNeIa Ω0−ΩΛ, mainly because of the different redshift range, 0.5–2 for SNeIa
and 1000 for CMB. Obviously, the combination of the three tests is very
powerful, but its application requires a good understanding of all the different
systematics.

This picture is still valid after recent observations by Chandra and XMM
showed that the physics of clusters is more complicated than expected. The key
questions on the future of precision cosmology with clusters of galaxies are: do
we need a new, large, all–sky survey of clusters? Or should we first understand
better the physics of the ICM? Therefore, which is the best instrument we
should build next? I think that the best answer is that a new, medium–depth
all–sky survey of clusters is needed for both aspects. First, a large survey can
help in obtaining strong constraints on the cosmological parameters, providing
at the same time large samples to investigate the relationship between X–
ray observables and the dynamical masses. A second crucial aspect, is that
a large survey would discover new clusters, especially at high redshift. This
is mandatory to provide targets for the future X–ray missions, which will
provide sensitive, narrow–field instruments to investigate the physics of the
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Fig. 5.16. The cosmic triangle [53], see http://wwwphy.princeton.edu/ steinh/).
The complementarity of the three classic cosmological tests is clearly shown

ICM. Without a new wide survey, we will run out of clusters to observe!
Several proposals of medium–size mission have been circulated so far, but at
present there are no planned large–area surveys of the X–ray sky. The future
of X–ray cluster astrophysics largely depends on this.

5.5 What to Bring Home

At the end of this introduction, we should be aware that clusters of galaxies
constitute a cosmological tools to significantly constrain Ω0 and the spectrum
of primordial fluctuations, through tests based on dynamics or on geometry.
X–ray observations offer the best tool to measure mass and collect complete
sample of clusters. Main results points towards a flat Λ–dominated Universe
(Ω ∼ 0.3 and ΩΛ ∼ 0.7, or w = −1) and a normalization of the fluctuations
power spectrum consistent with that measured from CMB for a CDM Universe
(σ8 � 0.8).

If someone wants to start the business of cosmological tests with clusters,
she/he just needs basic programming skills to put in a simple code all the
formulae we discussed, and a good X–ray observer among the collaborators,
in order to have access to a well defined, complete survey of clusters. However,
one must know that this game was played a lot starting from the 90’s, when
it was realized that clusters constitute one of the most powerful cosmological
tools. At present, in 2006, most of the best X–ray clusters surveys have been
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exploited in this sense. Therefore, if you want to start the business, you bet-
ter have something smart in mind, mainly a way to deal with any possible
systematics or with a better treatment of the effects of the poorly known
thermodynamics of the ICM.

However, a noticeable contribution would be given by supporting the sci-
entific case of future X–ray missions to obtain new data, in the form of a wide
and complete sample of clusters. Larger samples indeed, will allow to study at
the same time the thermodynamics of the ICM and the evolution of clusters as
a population. Finally, one should not have the feeling that the physics of the
ICM is now the hot topic at the expenses of precision cosmology, which should
rely only on tests based on SNeIa and CMB. As a general comment, I would
like to stress that clusters are probing a different cosmic epoch with respect
to CMB, and a different physics with respect to SNeIa, therefore they will
always be a complementary and useful test for cosmology. The complex ICM
physics, instead of being an obstacle, must be seen as a further opportunity
to learn about structure formation in the Universe.
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Abstract. In this manuscript I introduce the mathematics and physics that un-
derpins recent work using the clustering of galaxies to derive cosmological model
constraints. I start by describing the basic concepts, and gradually move on to some
of the complexities involved in analysing galaxy redshift surveys, focusing on the
2dF Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky survey (SDSS).
Difficulties within such an analysis, particularly dealing with redshift space distor-
tions and galaxy bias are highlighted. I then describe current observations of the
CMB fluctuation power spectrum, and consider the importance of measurements of
the clustering of galaxies in light of recent experiments. Finally, I provide an exam-
ple joint analysis of the latest CMB and large-scale structure data, leading to a set
of parameter constraints.

6.1 Introduction

The basic techniques required to analyse galaxy clustering were introduced
in the 70s [48], and have been subsequently refined to match data sets of in-
creasing quality and size. In this manuscript I have tried to summarise the
current state of this field. Obviously, such an attempt can never be complete
or unique in every detail, although it is still worthwhile as it is always useful
to have more than one source of information. An excellent alternative view-
point was recently provided by Hamilton [25, 26], which covers some of the
same material, and provides a more detailed review of some of the statistical
methods that are used. Additionally it is worth directing the interested reader
to a number of good text books that cover this topic [11, 15, 37, 41]. In addi-
tion to a description of the basic mathematics and physics behind a clustering
analysis I have attempted to provide a discussion of some of the fundamental
and practical difficulties involved. The cosmological goal of such an analysis
is consider in the final part of this manuscript, where the combination of cos-
mological constraints from galaxy clustering and the CMB is discussed, and
an example multi-parameter fit to recent data is considered.
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6.2 Basics

Our first step is to define the dimensionless overdensity

δ(x) =
ρ(x) − ρ̄

ρ̄
, (6.1)

where ρ̄ is the expected mean density, which is independent of position because
of statistical homogeneity.

The autocorrelation function of the overdensity field (usually just referred
to as the correlation function) is defined as

ξ(x1,x2) ≡ 〈δ(x1)δ(x2)〉 . (6.2)

From statistical homogeneity and isotropy, we have that

ξ(x1,x2) = ξ(x1 − x2) , (6.3)
= ξ(|x1 − x2|) . (6.4)

To help to understand the correlation function, suppose that we have two small
regions δV1 and δV2 separated by a distance r. Then the expected number of
pairs of galaxies with one galaxy in δV1 and the other in δV2 is given by

〈npair〉 = n̄2 [1 + ξ(r)] δV1δV2 , (6.5)

where n̄ is the mean number of galaxies per unit volume. We see that ξ(r)
measures the excess clustering of galaxies at a separation r. If ξ(r) = 0, the
galaxies are unclustered (randomly distributed) on this scale – the number
of pairs is just the expected number of galaxies in δV1 times the expected
number in δV2. ξ(r) > 0 corresponds to strong clustering, and ξ(r) < 0 to
anti-clustering. Estimation of ξ(r) from a sample of galaxies will be discussed
in Sect. 6.5.1.

It is often convenient to consider perturbations in Fourier space. In cos-
mology the following Fourier transform convention is most commonly used

δ(k) ≡
∫

δ(r)eik.rd3r (6.6)

δ(r) =
∫

δ(k)e−ik.r
d3k

(2π)3
. (6.7)

The power spectrum is defined as

P (k1,k2) =
1

(2π)3
〈δ(k1)δ(k2)〉 . (6.8)

Statistical homogeneity and isotropy gives that

P (k1,k2) = δD(k1 − k2)P (k1) , (6.9)
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where δD is the Dirac delta function. The power spectrum is sometimes pre-
sented in dimensionless form

Δ2(k) =
k3

2π2
P (k) . (6.10)

The correlation function and power spectrum form a Fourier pair

P (k) ≡
∫

ξ(r)eik.rd3r (6.11)

ξ(r) =
∫

P (k)e−ik.r
d3k

(2π)3
, (6.12)

so they provide the same information. The choice of which to use is therefore
somewhat arbitrary (see [25] for a further discussion of this).

The extension of the 2-pt statistics, the power spectrum and the correlation
function, to higher orders is straightforward with (6.5) becoming

〈ntuple〉 = n̄n
[
1 + ξ(n)

]
δV1 · · · δVn . (6.13)

However, the central limit theorem implies that a density distribution is
asymptotically Gaussian in the limit where the density results from the aver-
age of many independent processes. The overdensity field has zero mean by
definition, so is completely characterised by either the correlation function
or the power spectrum. Consequently, in this regime, measuring either the
correlation function or the power spectrum provides a statistically complete
description of the field.

6.3 Matter Perturbations

There are three physical stages in the creation and evolution of perturbations
in the matter distribution. First, primordial perturbation are produced in an
inflationary epoch. Second, the different forms of matter within the Universe
affect these primordial perturbations. Third, gravitational collapse leads to
the growth of these fluctuations. In this section we will discuss the form of
the perturbations on scales where gravitational collapse can be described by
a linear change in the overdensity. The gravitational collapse of perturbations
will be considered in Sect. 6.4.

6.3.1 Why Are There Matter Perturbations?

A period of “faster than light” expansion in the very early Universe solves a
number of problems with standard cosmology. In particular, it allows distant
regions that appear causally disconnected to have been connected in the past
and therefore explains the flatness of the CMB. Additionally it drives the
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energy density of the Universe close to the critical value and, most importantly
for our discussion of perturbations, it provides a mechanism for producing seed
perturbations as quantum fluctuations in the matter density are increased to
significant levels. For a detailed examination of the creation of fluctuations see
[36]. For now, we will just comment that the most basic inflationary models
give a spectrum of fluctuations P (k) ∝ kn with n ∼ 1.

6.3.2 The Effect of Dark Matter

The growth of dark matter fluctuations is intimately linked to the Jeans scale.
Perturbations smaller than the Jeans scale do not collapse due to pressure
support – for collision-less dark matter this is support from internal random
velocities. Perturbations larger than the Jeans scale grow through gravity at
the same rate, independent of scale. In a Universe with just dark matter and
radiation, the Jeans scale grows to the size of the horizon at matter-radiation
equality, and then reduces to zero when the matter dominates. We therefore
see that the horizon scale at matter-radiation equality will be imprinted in the
distribution of fluctuations – this scale marks a turn-over in the growth rate
of fluctuations. What this means in practice is that there is a cut-off in the
power spectrum on small scales, dependent on ΩMh, with a stronger cut-off
predicted for lower ΩMh values. This is demonstrated in Fig. 6.1.

6.3.3 The Effect of Baryons

At early epochs baryons are coupled to the photons and, if we consider a
single fluctuation, a spherical shell of gas and photons is driven away from the
perturbation by a sound wave. When the photons and gas decouple, a spherical
shell of baryons is left around a central concentration of dark matter. As the
perturbation evolves through gravity, the density profiles of the baryons and
dark matter grow together, and the perturbation is left with a small increase
in density at a location corresponding to the sound horizon at the end of the
Compton drag epoch [2, 3]. This real-space “shell” is equivalent to oscillations
in the power spectrum. In addition to these acoustic oscillations, fluctuations
smaller than the Jeans scale, which tracks the sound horizon until decoupling,
do not grow, while large fluctuations are unaffected and continue to grow.
The presence of baryons therefore also leads to a reduction in the amplitude
of small scale fluctuations. For more information and fitting formulae for the
different processes a good starting point is [17].

6.3.4 The Effect of Neutrinos

The same principal of gravitational collapse versus pressure support can be
applied in the case of massive neutrinos. Initially the neutrinos are relativistic
and their Jeans scale grows with the horizon. As their temperature decreases
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Fig. 6.1. Plots showing the linear power spectrum (solid lines) for a variety of dif-
ferent cosmological parameters. Only the shapes of the power spectra are compared,
and the amplitudes are matched to the same large scale value. Our base model has
ΩMh = 0.2, ns = 1, Ωb/ΩM = 0 and Ων/ΩM = 0. Deviations from this base model
are given in each panel. As can be seen many of the shape distortions from chang-
ing different parameters are similar, which can cause degeneracies between these
parameters when fitting models to observations

their momenta drop, they become non-relativistic, and the Jeans scale de-
creases – they can subsequently fall into perturbations. Massive neutrinos are
interesting because even at low redshifts the Jeans scale is cosmologically rel-
evant. Consequently the linear power spectrum (the fluctuation distribution
excluding the non-linear collapse of perturbations) is not frozen shortly after
matter-radiation equality. Instead its form is still changing at low redshifts.
Additionally, the growth rate depends on the scale – it is suppressed until
neutrinos collapse into perturbations, simply because the perturbations have
lower amplitude. The effect of neutrino mass on the present day linear power
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spectrum is shown in Fig. 6.1. Note that in this plot the relative amplitudes of
the power spectra have been removed – it is just the shape that is compared.
The amplitude would also depend on the combined neutrino mass.

6.4 The Evolution of Perturbations

Having discussed the form of the linear perturbations, we will now consider
how perturbations evolve through gravity in the matter and dark energy dom-
inated regimes. To do this, we will use the spherical top-hat collapse model,
where we compare a sphere of background material with radius a, with one
of radius ap which contains the same mass, but has a homogeneous change in
overdensity. The ease with which the behaviour can be modelled follows from
Birkhoff’s theorem, which states that a spherically symmetric gravitational
field in empty space is static and is always described by the Schwarzchild
metric [8]. This gives that the behaviour of the homogeneous sphere of uni-
form density and the background can be modelled using the same equations.
For simplicity we initially only consider the sphere of background material.

The sphere of background material behaves according to the standard
Friedmann and cosmology equations

E2(a) =
1
a2

(
da

dH0t

)2

= ΩMa−3 + ΩKa−2 + ΩXaf(a) , (6.14)

1
a

d2a

dt2
= −H2

0

2

[
ΩMa−3 + [1 + 3w(a)]ΩXaf(a)

]
. (6.15)

These equations have been written in a form allowing for a general time-
dependent equation of state for the dark energy p = w(a)ρ. Conservation of
energy for the dark energy component provides the form of f(a)

f(a) =
−3
ln a

∫ ln a

0

[1 + w(a′)] d ln a′ . (6.16)

The dark matter and dark energy densities evolve according to

ΩM (a) =
ΩMa−3

E2(a)
, ΩX(a) =

ΩXaf(a)

E2(a)
. (6.17)

Tracks showing the evolution of ΩM (a) and ΩX(a) are presented in Fig. 6.2
for h = 0.7 and constant dark energy equation of state w = −1. Of particular
interest are solutions which predict recollapse, but that have ΩX > 0. Pro-
vided that ΩM >> ΩX , the perturbation will collapse before the dark energy
dominates. For a cosmology with ΩM ∼ 0.3 and ΩX ∼ 0.7, these solutions
correspond to overdense spheres that will collapse and form structure.

For the perturbation, the cosmology equation can be written
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Fig. 6.2. Plot showing the evolution of the matter and vacuum energy densities for
a selection of cosmologies (grey lines) with constant dark energy equation of state
parameter w = −1. The critical models that border the different types of evolution
are shown by the black lines. The dotted line highlights ΩX = 0

1
ap

d2ap
dt2

= −H2
0

2

[
ΩMa−3

p + [1 + 3w(a)]ΩXaf(a)
]

, (6.18)

where it is worth noting that the dark energy component is dependent on
a rather than ap. This does not matter for Λ-cosmologies as f(a) = 0, and
the a dependence in this term is removed. For other dark energy models,
this dependence follows if the dark energy does not cluster on the scales of
interest. For such cosmological models, we cannot write down a Friedmann
equation for the perturbation because energy is not conserved [63]. We also
have to be more careful using virialisation arguments to analyse the behaviour
of perturbations [47].

To first order, the overdensity of the perturbation δ = a3/a3
p − 1 evolves

according to

d2δ

d(H0t)2
+

2
a

da

d(H0t)
dδ

d(H0t)
− 3

2
ΩMa−3δ = 0 , (6.19)

which is known as the linear growth equation.
The evolution of the scale factor of the perturbations is given by the solid

lines in Fig. 6.3, compared with the background evolution for a cosmology
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Fig. 6.3. Plot showing the evolution of the scale factor of perturbations with differ-
ent initial overdensities. A standard cosmology with ΩM = 0.3, ΩX = 0.7, h = 0.7,
w = −1 is assumed. The dashed lines show the linear extrapolation of the pertur-
bation scales for the two least overdense perturbations

with ΩM = 0.3, ΩX = 0.7, h = 0.6, w = −1. These data were calculated by
numerically solving (6.18). For comparison, the dashed lines were calculated
by extrapolating the initial perturbation scales using the linear growth factor,
calculated from (6.19). Dashed lines are only plotted for the two least over-
dense perturbations. In comparison, the most overdense perturbations are
predicted to collapse to singularities. However, in practice inhomogeneities,
and the non-circular shape of actual perturbations will mean that the object
virialises with finite extent.

The evolution of perturbations has a profound affect on the present day
power spectrum of the matter fluctuations on small scales. On the largest
scales, the overdensities are small and linear theory (6.19) holds. This increases
the amplitude of the fluctuations, but does not change the shape of the power
spectrum, as the perturbation all grow at the same rate (except if neutrinos
are cosmologically relevant – see Sect. 6.3.4). However, on the smallest scales,
overdensities are large and collapse to virialised structures (e.g. cluster of
galaxies). The effect on the power spectrum is most easily quantified using
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Fig. 6.4. Plots comparing non-linear (solid lines) and linear power spectra (dot-
ted lines) at a series of redshifts from z = 0 to z = 5. In the left panel the raw
dimensionless power spectra are plotted while in the right panel the ratio between
non-linear and linear predictions is shown. As can be seen, on large scales linear
growth simply increases the amplitude of the power spectrum, while on small scales
we also see an increase in power as structures collapse at low redshifts. There is also
a slight decrease in power on intermediate scales – it is this power that is transferred
to small scales. Non-linear power spectra were calculated from the fitting formulae
of [56] with ΩM = 0.3, h = 0.7, ns = 1, and Ωb/Ωm = 0.15

numerical simulations, and power spectra calculated from fitting formulae
derived from such simulations [56] are plotted in Fig. 6.4.

6.5 Galaxy Survey Analysis

6.5.1 Estimating the Correlation Function

First suppose that we have a single population of objects forming a Poisson
sampling of the field that we wish to constrain. This is too simple an assump-
tion for the analysis of modern galaxy redshift surveys, but it will form a
starting point for the development of the analysis tools required.

First we define the (unweighted) galaxy density field

ng(r) ≡
∑
i

δD(r− ri) . (6.20)

The definition of the correlation function then gives

〈ng(r)ng(r′)〉 = n̄(r)n̄(r′)[1 + ξ(r− r′)] + n̄(r)δD(r− r′) . (6.21)

The final term in this equation relates to the shot noise, and only occurs for
zero separation so can be easily dealt with.
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In order to estimate the correlation function, we can consider a series of
bins in galaxy separation and make use of (6.21). Suppose that we have
created a (much larger) random distribution of points that form a Poisson
sampling of the volume occupied by the galaxies, then

1 + ξ =
〈DD〉
〈RR〉 (1 + ξΩ) , (6.22)

where DD is the number of galaxy-galaxy pairs within our bin in galaxy
separation divided by the maximum possible number of galaxy-galaxy pairs
(i.e. for n galaxies the maximum number of distinct pairs is n(n − 1)/2).
Similarly RR is the normalised number of random-random pairs, and we can
also define DR as the normalised number of galaxy-random pairs.

If the true mean density of galaxies n̄(r) is estimated from the sample itself
(as is almost always the case), we must include a factor (1+ ξΩ) that corrects
for the systematic offset induced. ξΩ is the mean of the two-point correlation
function over the sampling geometry [34]. Given only a single clustered sample
it is obviously difficult to determine ξΩ, and the integral constraint (as it is
known) remains a serious drawback to the determination of the correlation
function from small samples of galaxies.

Because the galaxy and random catalogues are uncorrelated, 〈DR〉 =
〈RR〉, and we can consider a number of alternatives to (6.22). In particular

1 + ξ =

(
1 +

〈
(D −R)2

〉
〈RR〉

)
(1 + ξΩ) , (6.23)

has been shown to have good statistical properties [34].

6.5.2 Estimating the Power Spectrum

In this section we consider estimating the power spectrum by simply taking a
Fourier transform of the overdensity field [5, 21, 45]. As for our estimation of
the correlation function, suppose that we have quantified the volume occupied
by the galaxies by creating a large random catalogue matching the spatial
distribution of the galaxies, but with no clustering (containing α times as
many objects). The (unnormalised) overdensity field is

F (r) = ng(r)− nr(r)/α , (6.24)

where ng is given by (6.20), and nr is similarly defined for the random cata-
logue.

Taking the Fourier transform of this field, and calculating the power gives

〈
|F (k)|2

〉
=
∫

d3k′

(2π)3
[P (k′)− P (0)δD(k)]|G(k − k′)|2 + (1 +

1
α

)
∫

d3rn̄(r) ,

(6.25)
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where G(k) if the Fourier transform of the window function, defined by

G(k) ≡
∫

n̄(r)eik.rd3r , (6.26)

and the final term in (6.25) gives the shot noise. In contrast to the correla-
tion function, there is a shot noise contribution at every scale. The integral
constraint has reduced to subtracting a single Dirac delta function from the
center of the unconvolved power – as before this allows for the fact that we
do not know the mean density of galaxies.

6.5.3 Complications

There are two complications which constitute the main hindrance to using
clustering in galaxy surveys to constrain cosmology. They are redshift space
distortions – systematic deviations in measured redshift in addition to the
Hubble flow, and galaxy bias – the fact that galaxies do not form a Poisson
sampling of the underlying matter distribution. Denoting the measurement of
a quantity in redshift space (galaxy distances calculated from redshifts) by a
superscript s and in real space (true galaxy distances) by r, we can write the
measured power spectrum P s

gal as

P s
gal

Pmass
=

P s
gal

P r
gal

×
P r

gal

Pmass
. (6.27)

The first of these terms corresponds to redshift space distortions, while the
second corresponds to galaxy bias.

Redshift Space Distortions

There are two key mechanisms that systematically distort galaxy redshifts
from their Hubble flow values. First, structures are continually growing
through gravity, and galaxies fall into larger structures. The infall velocity
adds to the redshift, making the distance estimates using the Hubble flow
wrong. This means that clusters of galaxies appear thinner along the line-
of-sight, causing an increase in the measured power. In the distant observer
approximation, the apparent amplitude of the linear density disturbance can
be readily calculated [31], leading to a change in the power corresponding to

P s
gal = P r

gal(1 + βμ2)2 , (6.28)

where β = Ω0.6
M /b, b is an assumed linear bias for the galaxies, and μ is the

cosine between the velocity vector and the line-of-sight. In the small angle
approximation, we average over a uniform distribution for μ giving

P s
gal = P r

gal

[
1 +

2
3
β +

1
5
β2

]
. (6.29)
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For large redshift surveys of the nearby Universe, the small angle approxima-
tion breaks down, although a linear result can be obtained using a spherical
expansion of the survey (see Sect. 6.5.5).

When objects collapse and virialise they attain a distribution with some
velocity dispersion. These random velocities smear out the collapsed object
along the line of sight in redshift space, leading to the existence of linear struc-
tures pointing towards the observer. These structures, known as “fingers-of-
god” can be corrected by matching with a group catalogue and applying a
correction to the galaxy field before analysis [60]. Alternatively, if the pair-
wise distribution of velocity differences is approximated by an exponential
distribution, then

P s
gal = P r

gal(1 + k2μ2σ2
p/2)−1 , (6.30)

where σp ∼ 400 km s−1 is the pairwise velocity dispersion [28].

Galaxy Bias

By the simple phrase “galaxy bias” astronomers quantify the “messy” as-
trophysics of galaxy formation. It is common to assume a local linear bias
with δgal = bδmass, which leads to a simple relation between power spectra
P r

gal = b2Pmass. If this bias is independent of the scale probed, then there is
nothing to worry about – the galaxy and matter power spectra have the same
shape. However, it is well known that galaxies of different types have different
clustering strengths – two recent analyses are [53, 64].

One simple way of understanding galaxy bias is to use the “halo model”,
which has become popular over the last 5 years [13, 42, 54]. First, consider
the distribution of the underlying matter – the power spectrum was shown in
Fig. 6.4. There are two distinct regimes: on large scales, linear growth holds,
while on small scales the dark matter has formed into halos: it has either
undergone collapse and has virialised, or is on the way to virialisation. Galax-
ies pinpoint certain locations within the dark matter halos, according to an
occupation distribution for each galaxy type. This forms a natural environ-
ment in which to model galaxy bias, with galaxies of different luminosities
and types have different occupation distributions depending on the physics of
their formation.

For 2-pt statistics, then there are two possibilities for pairs of galaxies. We
could have chosen a pair where both galaxies lie in the same halo – this is
most likely on small scales. Alternatively, the galaxies might be in different
halos – this is most likely on large scales. On large scales, the halos themselves
are biased compared with the matter and we can use the peak-background
split model [9, 40, 55] to estimate the increase in clustering strength. This
limiting large scale value offers a route to determine the masses of the virialised
structures in which particular galaxies live.

Given a linear bias model for each type of galaxy in the sample to be
analysed, it is possible to multiply the contribution of each galaxy to the esti-
mate of the overdensity field by the inverse of an expected bias [45]. Provided
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the bias model is correct (and possibly altered for each scale observed), then
this removes any systematic offset in the recovered power spectrum caused by
galaxy bias. The problem is that we need to have an accurate model of the
galaxy bias in order to remove it.

6.5.4 Weights

The procedure described in Sect. 6.5.2 can be extended to include weights for
each galaxy in order to optimise the analysis [21]. Under the assumptions that
the wavelength of interest 2π/k is small compared with the survey scale (i.e.
the window is negligible), and that the fluctuations are Gaussian, then the
optimal weight applied to galaxy i is

wi =
1

1 + n̄(ri)P̂ (k)
, (6.31)

where n̄(ri) is the mean galaxy density at the location of galaxy i. At locations
where the mean galaxy density is low, galaxies are weighted equally. Where
the galaxy density is high, we weight by volume. It is worth noting that the
optimal weights also depend on an estimate of the power spectrum to be
measured, and therefore depend on the scale of interest. However, in practice
this dependence is sufficiently weak that very little information is lost by
assuming a constant P̂ (k).

It is possible to include galaxy bias when determining weights and opti-
mising the analysis in order to recover the most signal. Given a bias for each
galaxy bi (which can be dependent on any galaxy properties and the scale of
interest), then the optimal weighting is [45].

wi =
b2i

1 +
∑

j n̄(ri, bj)b2j P̂ (k)
, (6.32)

which up-weights the most biased galaxies that contain the strongest cosmo-
logical signal.

6.5.5 Spherical Bases

In Sect. 6.5.2 we described the most simple analysis method for a 3-dimensional
galaxy survey – decomposing into a 3D Fourier basis. However, as we discussed
in Sect. 6.5.3 redshift-space distortions complicate the situation, and cannot
easily be dealt with using a Fourier basis. By decomposing into a basis that
is separable in radial and angular directions, we can more easily correct such
distortions. A pictorial comparison of the Fourier basis with a radial-angular
separable basis is presented in Fig. 6.5.

In this section we provide an overview of a formalism to do this based on
work by [29, 46, 58]. For alternative formalisms see [20, 26, 60]. In compar-
ison with the Fourier decomposition (6.6), we decompose into a 3D basis of
Spherical Harmonics Ylm and spherical Bessel functions jl
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Fig. 6.5. Comparison of 3D Fourier basis split into 2D and 1D components (right)
with basis of Spherical Harmonics (with l = 2 and m = 0, 1 – top left) and Spherical
Bessel functions (bottom left)

δ(x) =

√
2
π

∫ ∞

0

∑
l,m

δlm(k)jl(kx)Ylm(θ, φ)kdk . (6.33)

Because of the choice of bases, the transformation δlm(k)↔ kδ(k) is unitary
so we retain the benefit of working with the Fourier power spectrum

〈δlm(k)δl′m′(k′)〉 = P (k)δD(k − k′)δD(l − l′)δD(m−m′) . (6.34)

As in Sect. 6.5.2, we have simplified the analysis by not including any galaxy
weights, although these can be introduced into the formalism. Additionally, it
is easier to work with a fixed boundary condition - usually that fluctuations
vanish at some large radius so that we are only concerned with radial modes
that have

d

dx
jl(kx)

∣∣∣∣
xmax

= 0 , (6.35)

so that the decomposition becomes

δ(x) =
∑
l,m,n

clnδlmnjl(klnx)Ylm(θ, φ) , (6.36)

where cln is a normalising constant.
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In order to analyse the transformed modes, we need a model for 〈δlmnδl′m′n′〉.
First we deal with the survey volume by introducing a convolution

δ̂lmn =
∑
l′m′n′

M l′m′n′
lmn δl′m′n′ , (6.37)

where

M l′m′n′
lmn = clncl′n′

∫
d3xρ̄(x)jl(klnx)jl′ (kl′n′x)Y ∗

lm(θ, φ)Yl′m′(θ, φ) . (6.38)

We can include the effect of linear redshift space distortions by a transform

jl(klnxs) � jl(klnxr) + Δxlin
d

dxr
jl(klnxr) , (6.39)

where
Δxlin = β

∑
lmn

1
k2
ln

clnδlmn
djl(klnxr)

dxr
Ylm(θ, φ) . (6.40)

Here β = Ω0.6
M /b. The bias b corrects for the fact that while we measure the

galaxy power spectrum, the redshift space distortions depend on the mass.
We can also introduce a further convolution to correct for the small-scale
fingers-of-god effect

δ̂l′m′n′ =
∑

l′′m′′n′′
Sl

′′m′′n′′
l′m′n′ δl′′m′′n′′ , (6.41)

where

Sl
′′m′′n′′
l′m′n′ = cl′n′cl′′n′′δDl′l′′δ

D
m′m′′

∫ ∫
p(r − y)jl′(kl′n′r)jl′′ (kl′′n′′y) r dr y dy ,

(6.42)
and p(r − y) is the 1-dimensional scattering probability for the velocity dis-
persion. It is also possible to include bias and evolution corrections in the
analysis method [46].

For a given cosmological model, we can use the above formalism to calcu-
late the covariance matrix 〈δlmnδl′m′n′〉 for N modes, and then calculate the
Likelihood of a given cosmological model assuming that δ̂lmn has a Gaussian
distribution

L[δ̂lmn|model] =
1

(2π)N/2|C|1/2 exp
[
−1

2
δ̂
T

lmnC
−1δ̂lmn

]
, (6.43)

where C is the matrix of 〈δlmnδl′m′n′〉.

6.6 Practicalities

6.6.1 Brief Description of Redshift Surveys

The 2dF Galaxy Redshift Survey (2dFGRS), which is now complete, covers
approximately 1800 square degrees distributed between two broad strips, one
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across the South Galactic pole and the other close to the North Galactic Pole,
plus a set of 99 random 2 degree fields spread over the full southern galactic
cap. The final catalogue contains reliable redshifts for 221 414 galaxies selected
to an extinction-corrected magnitude limit of approximately bJ = 19.45 [12].

In contrast, the Sloan Digital Sky Survey (SDSS) is an ongoing photo-
metric and spectroscopic survey. The SDSS includes two spectroscopic galaxy
surveys: the main galaxy sample which is complete to a reddening-corrected
Petrosian r magnitude brighter than 17.77, and a deeper sample of luminous
red galaxy sample selected based on both colour and magnitude [18]. The
SDSS has regular public data releases: the 4th data release in 2005 included
480000 independent galaxy spectra [1]. When completed, the SDSS will have
obtained spectra for ∼ 106 galaxies.

6.6.2 Angular Mask

Both the recent 2dF galaxy redshift (2dFGRS) and the ongoing Sloan Digital
Sky Survey (SDSS) adopted an adaptive tiling system in order to target pho-

Fig. 6.6. Section in the SDSS DR4 angular mask showing the positions of galaxies
with measured redshifts (black dots), the positions of the plates from which the
spectra were obtained (large black circles) and the segments within the mask that
have different completenesses (coloured regions)
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tometrically selected galaxies for spectroscopic follow-up. The circular tiles
within which spectra could be taken in a single pointing of the telescope were
adaptively fitted over the survey region, with regions of high galaxy density
being covered by two or more tiles. A region of such tiling is shown in Fig. 6.6.
This procedure divides the survey into segments, each with a different com-
pleteness – the ratio of good quality spectra to galaxies targeted. It is usually
assumed that this completeness is uniform across each of the segments formed
by overlapping tiles. Understanding this completeness is a major considera-
tion when performing a large-scale structure analysis of either of these surveys.

Fig. 6.7. Redshift distribution of spectroscopically observed galaxies within the
SDSS DR4 with apparent R magnitude less than 17.5 and 17.77 (solid circles). For
comparison we show the best fit model given by (6.44) for each distribution (solid
lines)
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Note that the distribution of segments depends on all adjoining targeted tiles,
not just those that have been observed.

As well as understanding the completeness, we also need to consider the
effect of the weather – spectra taken under bad observing conditions will
tend to preferentially give redshifts for nearby rather than distant galaxies.
We also need to worry about bad fields – regions near bright stars where
photometric data is of poor quality. For the SDSS, there are hard limits for the
spectroscopic region depending on how much photometric data was available
when the targeting algorithm was run. All of these effects are well known and
can be included in an analysis.

6.6.3 Radial Distribution

In addition to the angular distribution of galaxies, we also need to be able
to model the radial distribution – in the formalism introduced in Sect. 6.5.2,
we need this information in order to create the random catalogue. Perhaps
the best way of doing this is to model the true luminosity function of the
distribution of observed galaxies, and then apply a magnitude cut-off. This
was the procedure adopted in [10]. However, the reduction in the amplitude
of the recovered power spectrum caused by fitting to the redshift distribution
is small and it is common to simply fit a functional form to the distribution.
In Fig. 6.7 we present the distribution of galaxy redshifts in the SDSS DR4
sample compared with a fit of the form [4]

f(z) = zg exp

[
−
(

z

zc

)b]
, (6.44)

where g, b and zc are free parameters that have been fitted to the data.

6.7 Results from Recent Surveys

6.7.1 Results

In Table 6.1 we summarise recent cosmological constraints derived from the
2dFGRS and SDSS. In order to provide a fair test of different analyses, we
have only presented best-fit parameters and errors for ΩMh, fixing the other
important parameters. Degeneracies between parameters, caused by the sim-
ilarity between power spectrum shapes shown in Fig. 6.1 mean that, it is
only the most recent analyses of the largest samples that can simultaneously
constrain 2 or more of these parameters. In Table 6.1 we also presented the
number of galaxy redshifts used in each analysis.

The power spectra recovered from these analyses are compared in Fig. 6.8.
We have corrected each for survey window function effects using the best-fit
model power spectrum. The amplitudes have also been matched, so this plot
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Table 6.1. Summary of recent cosmological constraints from 2dFGRS and SDSS
galaxy redshift surveys. To try to provide a fair comparison, we only present the best-
fit value and quoted error for ΩMh assuming that all other cosmological parameters
are fixed (ns = 1, h = 0.72, Ωb/ΩM = 0.17, Ων/ΩM = 0.0), and marginalise over
the normalisation

survey reference galaxy redshifts method ΩMh

2dFGRS [43] 166490 Fourier 0.206 ± 0.023
2dFGRS [46] 142756 Spherical Harmonics 0.215 ± 0.035
2dFGRS [10] 221414 Fourier 0.172 ± 0.014
SDSS [49] 205484 KL analysis 0.207 ± 0.030
SDSS [60] 205443 Spherical Harmonics 0.225 ± 0.040
SDSS LRG [19] 46748 correlation function 0.185 ± 0.015

merely shows the shapes of the spectra. It is clear that the general shape of
the galaxy power spectrum is now well known, and the turn-over is detected at
high significance. The exact position of the turn-over is however, more poorly
known and by examining the final column of Table 6.1, we see that there are
discrepancies between recent analyses at the ∼ 2σ level.

6.8 Combination with CMB Data

In this section we consider recent CMB observations and see how the com-
plementarity between CMB and large scale structure constraints can break
degeneracies inherent in these data. The major steps required in a joint anal-
ysis are described, leading up to Sect. 6.8.5, in which we present the constraints
from an example fit to recent data.

6.8.1 Cosmological Models

Before we start looking at constraining cosmological models using CMB and
galaxy P (k) data, it is worth briefly introducing the set of commonly used
cosmological parameters (for further discussion see the recent review by [33]).
It is standard to assume Gaussian, adiabatic fluctuations, and we will not
discuss alternatives here. It is possible to parameterise the cosmological model
using a number of related sets of parameters. It is vital in any analysis that the
model that is being fitted to the data is fully specified – including parameters
and assumed priors. Many parameters have values that simplify the theory
from which the models are calculated (e.g. the assumption that the total
density in the Universe is equal to the critical density). Whether the data
justify dropping one of these assumptions is an interesting Bayesian question
[38], which is outside the remit of the overview presented here, and we will
simply introduce the parameters commonly used and possible assumptions
about their values.
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Fig. 6.8. Plot comparing galaxy power spectra calculated by different analysis
techniques for different surveys. The redshift-space power spectrum calculated by
[10] (solid circles with 1-σ errors shown by the shaded region) are compared with
other measurements of the 2dFGRS power spectrum shape by [43] – open circles,
[46] – solid stars, [59] – open stars. Where appropriate the data have been corrected
to remove effects of the survey volume, by calculating the effect on a model power
spectrum with ΩMh = 0.168, Ωb/ΩM = 0.0, h = 0.72 & ns = 1. A zero-baryon
model was chosen in order to avoid adding features into the power spectra. All of
the data are renormalized to match the power spectrum of [10]. The open triangles
show the uncorrelated SDSS real space P (k) estimate of [60], calculated using their
‘modeling method’ with no FOG compression (their Table 3). These data have been
corrected for the SDSS window as described above for the 2dFGRS data. The solid
line shows a model linear power spectrum with ΩMh = 0.168, Ωb/ΩM = 0.17,
h = 0.72, ns = 1 and normalization matched to the 2dFGRS power spectrum

First, we need to know the geometry of the Universe, parameterised by to-
tal energy density Ωtot, or the curvature ΩK , with the “simplified” value
being that the energy density is equal to the critical value (Ωtot = 1,
ΩK = 0). We also need to know the constituents of the energy density,
which we parameterise by the dark matter density Ωc, baryon density Ωb,
and neutrino density Ων . Although it is commonly assumed that the com-
bined neutrinos mass has negligible cosmological effect. The combined matter



6 Cosmological Constraints from Galaxy Clustering 177

density ΩM = Ωc + Ωb + Ων could also be defined as a parameter, re-
placing one of the other density measurements. We also need to specify
the dark energy properties, particularly the equation of state w(a), which
is commonly assumed to be constant w(a) = −1, so this field is equivalent
to Λ. The perturbations after inflation are specified by the scalar spectral
index ns, with ns = 1 being the most simple assumption. Possible run-
ning of this spectral index is parameterised by α = dns/dk if included.
A possible tensor contribution parameterised by the tensor spectral index
nt, and tensor-to-scalar ratio r is sometimes explicitly included. The evolu-
tion to present day is parameterised by the Hubble constant h, and for the
CMB the optical depth to last-scattering surface τ . Finally, three parame-
ters that are often ignored and marginalised over are the galaxy bias b(k)
(often assumed to be constant) and the CMB beam B and calibration C
errors.

6.8.2 The MCMC Technique

Large multi-parameter likelihood calculations are computationally expensive
using grid-based techniques. Consequently, the Markov-Chain Monte-Carlo
(MCMC) technique is commonly used for such analyses. While there is publi-
cally available code to calculate cosmological model constraints [35], the basic
method is extremely simple and relatively straightforward to code.

The MCMC method provides a mechanism to generate a random sequence
of parameter values whose distribution matches the posterior probability dis-
tribution of a Bayesian analysis. Chains are sequentially calculated using the
Metropolis algorithm [39]: given a chain at position x, a candidate point x′ is
chosen at random from a proposal distribution f(x′|x). This point is always
accepted, and the chain moves to point x′, if the new position has a higher
likelihood. If the new position x′ is less likely than x, then x′ is accepted, and
the chain moves to point x′ with probability given by the ratio of the likeli-
hood of x′ and the likelihood of x. In the limit of an infinite number of steps,
the chains will reach a converged distribution where the distribution of chain
links are representative of the likelihood hyper-surface, given any symmetric
proposal distribution f(x′|x) = f(x|x′) (the Ergodic theorem: see, e.g. [51]).

It is common to implement dynamic optimisation of the sampling of the
likelihood surface (see [24] e.g.). Again, it is simple to assume a multi-variate
Gaussian proposal function, centered on the current chain position. Given
such a proposal distribution, and an estimate of the covariance matrix for the
likelihood surface at each step, the optimal approach for a Gaussian likelihood
would proceed as follows.

Along each principal direction corresponding to an eigenvector of the co-
variance matrix, the variance σ2 of the multi-variate Gaussian proposal func-
tion should be set to be a fixed multiple of the corresponding eigenvalue of
the covariance matrix. To see the reasoning behind this, consider translat-
ing from the original 17 parameters to the set of parameters given by the
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decomposition along the principal directions of the covariance matrix each
divided by the standard deviation in that direction. In this basis, the like-
lihood function is isotropic and the parameters are uncorrelated. Clearly an
optimized proposal function will be the same in each direction, and we have
adjusted the proposal function to have precisely this property. There is just
a single parameter left to optimize – we are free to multiply the width of
the proposal function by a constant in all directions. But we know that the
optimal fraction of candidate positions that are accepted should be ∼ 0.25
[23], so we can adjust the normalization of the proposal width to give this
acceptance fraction. Note that the dynamic changing of the proposal function
width violates the symmetry of the proposal distribution f(x′|x) assumed
in the Metropolis algorithm. However, this is not a problem if we only use
sections of the chains where variations between estimates of the covariance
matrix are small.

Fig. 6.9. Plot comparing large scale structure (lower panel) and CMB (upper panel)
power spectra. The angular CMB power spectrum was converted to comoving scales
using the comoving distance to the last scattering surface. The matter power spec-
trum (solid – linear, dashed – non-linear, present day), has been ratioed to a smooth
model with zero baryons in order to highlight the baryonic features. Dotted lines
show the positions of the peaks in the CMB spectrum
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The remaining issue is convergence – how do we know when we have suffi-
ciently long chains that we have adequately sampled the posterior probability.
A number of tests are available [22, 62], although it’s always a good idea to
perform a number of sanity checks as well – e.g. do we get the same result
from different chains started a widely separated locations in parameter space?

6.8.3 Introduction to the CMB

Over the past few years there has been a dramatic improvement in the res-
olution and accuracy of measurements of fluctuations in the temperature of
the CMB radiation. The discovery of features, in particular, the first acous-
tic peak, in the power spectrum of the CMB temperature has led to a new
data-rich era in cosmology [7, 27]. More recently a significant leap forward
was made with the release of the first year data from the WMAP satellite

Fig. 6.10. Upper panel: The 1-yr WMAP TT power spectrum (circles) is plotted
with the CBI (triangles), VSA (squares) and ACBAR (stars) data at higher l.
Lower panel: The 1-yr WMAP TE power spectrum (circles). In both panels the
solid black line shows the best fit model calculated from fitting the CMB data
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Fig. 6.11. 2D projections of the 7D likelihood surface resulting from a fit to
the CMB data plotted in Fig. 6.10. The shading represents areas with −2ΔL =
2.3, 6.0, 9.2 corresponding to 1σ, 2σ and 3σ confidence intervals for multi-parameter
Gaussian random variables. There are two primary degeneracies - between Ωch

2 and
h and between ns, τ and Ωbh

2, which are discussed further in Sect. 6.8.4

[6, 30]. The relative positions and heights of the acoustic peaks encode in-
formation about the values of the fundamental cosmological parameters, as
discussed for the matter power spectrum in Sect. 6.3. For a flat cosmological
model with ns = 1, ΩM = 0.3, h = 0.7 and Ωbh

2 = 0.02 the CMB and matter
power spectra are compared in Fig. 6.9. In order to create Fig. 6.9, the angular
CMB power spectrum was converted to comoving scales by considering the
comoving scale of the fluctuations at the last scattering surface. In Fig. 6.9,
the matter power spectrum has been rationed to a smooth zero baryon model
in in order to highlight features – even so, the baryon oscillations are signifi-
cantly more visible in the CMB fluctuation spectrum. The vertical dotted lines



6 Cosmological Constraints from Galaxy Clustering 181

in this plot are located at the peaks in the CMB spectrum and highlight the
phase offset between the two spectra. The CMB peaks are π/2 out of phase
with the matter peaks because they occur where the velocity is maximum,
rather than the density at the last scattering surface – this is known as the
velocity overshoot. Additionally there is a projection effect – the observed
CMB spectrum is the 2D projection of 3D fluctuations, and so is convolved
with an asymmetric function: the projection can increase, but not decrease
the wavelength of a given fluctuation.

A compilation of recent CMB data is presented in Fig. 6.10. Here we have
plotted both the temperature-temperature (TT) auto-power spectrum and
the temperature-E-mode polarisation (TE) cross-power spectrum. The most
significant current data set is, of course, the WMAP data shown by the solid
circles in this figure. However, additional information is provided on small
scales by a number of other experiments. In Fig. 6.10, we plot data from the
CBI [50], VSA [14], and ACBAR [32] experiments.

Likelihood surfaces from a multi-parameter fit to these CMB data are
shown in Fig. 6.11. For this fit, 7 parameters were allowed to vary: Ωch

2,
Ωbh

2, h, τ , ns, σ8, and Ωνh
2. Other cosmological parameters were set at

their “model simplification” values as discussed in Sect. 6.8.1. In particu-
lar, we have assumed a flat cosmological model with Ωtot = 1 and that the
tensor contribution to the CMB is negligible. In choosing this set of 7 param-
eters, and using the standard MCMC technique we have implicitly assumed
uniform priors for each. The constraints on the 7 fitted parameters are given
in Table 6.2.

6.8.4 Parameter Degeneracies in the CMB Data

By examining Fig. 6.11 we see that the CMB data alone do not constrain
all of the fundamental cosmological parameters considered to high precision.

Table 6.2. Summary of cosmological parameter constraints calculated by fitting a
7-parameter cosmological model to the CMB data plotted in Fig. 6.10 and to the
combination of these data with the measurement of the 2dFGRS power spectrum
[10] – see text for details. Data are given with 1σ error, except for Ωνh2 which is
presented as a 1σ upper limit

parameter CMB constraint CMB+2dFGRS constraint

Ωch
2 0.107 ± 0.015 0.106 ± 0.006

Ωbh
2 0.0238 ± 0.0021 0.0235 ± 0.00166

h 0.725 ± 0.096 0.718 ± 0.036
τ < 0.204 ± 0.117 < 0.195 ± 0.085
ns 1.00 ± 0.064 0.987 ± 0.046
σ8 0.703 ± 0.125 0.696 ± 0.085

Ωνh2 < 0.00700 < 0.006
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Fig. 6.12. As Fig. 6.10, but now showing 3 different models: the dashed line shows
the best fit model in all panels – the model plotted in Fig. 6.10. The solid lines in
the top-left panel were calculated with h = ±0.1, top-right Ωc ± 0.1, bottom-left
τ + 0.3 and τ = 0, and bottom-right ns ± 0.2
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Degeneracies exist between certain combinations of parameters which lead to
CMB fluctuation spectra that cannot be distinguished by current data [16].
To help to explain how these degeneracies arise, CMB models with different
cosmological parameters are plotted in Fig. 6.12.

Constraining models to be flat does not fully break the geometrical degen-
eracy present when considering models with varying Ωtot, and a degeneracy
between the dark matter density Ωc and the Hubble parameter h remains.
Figure 6.12 shows that both Ωc and h affect the location of the first acoustic
peak. A simple argument can be used to show that models with the same
value of Ωmh3.4 predict the same apparent angle subtended by the light hori-
zon and therefore the same location for the first acoustic peak in the TT power
spectrum [44]. The degeneracy in Fig. 6.11 roughly follows this prediction.

Fig. 6.13. As Fig. 6.11, but now including extra constraints from the 2dFGRS
analysis of [10]. These constraints helps to break the primary degeneracies discussed
in Sect. 6.8.4
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There is another degeneracy that that can be seen in Fig. 6.11 between ns,
τ and Ωbh

2. From Fig. 6.12, we see that the effect of the optical depth τ on the
shape of the TT power spectrum occurs predominantly at low multipoles. By
adjusting the tilt of the primordial spectrum (ns), the low- power spectrum
can be approximately corrected for the change in τ , and the high- end can be
adjusted by changing the baryon density. This degeneracy is weakly broken
by the TE data which provide an additional constraint on τ .

6.8.5 Results from the Combination of LSS and CMB Data

The CMB degeneracy between Ωc and h can be broken by including additional
constraints from the power spectrum of galaxy clustering. There have been
a number of studies using both CMB and large-scale structure data to set
cosmological constraints, with a seminal paper coming from the WMAP col-
laboration [57]. Recently new small-scale CMB data and large-scale structure
analyses have increased the accuracy to which the cosmological parameters
are known. [52, 61].

In Fig. 6.13, we provide a likelihood plot as in Fig. 6.11, but now including
the cosmological constraints from the final 2dFGRS power spectrum [10]. For
this analysis, a constant bias was assumed and we fitted the galaxy power
spectrum over the range 0.02 < k < 0.15 hMpc−1. The derived parameter
constraints for the 7 parameters varied are compared with the constraints
from fitting the CMB data only in Table 6.2. The physical neutrino density
Ωνh

2 is unconstrained within the prior interval (physically, it must be > 0),
so we only provide an upper limit.

A Table of parameter constraints, such as that presented in Table 6.2 repre-
sents the end point of our story. We have introduced the major steps required
to utilise a galaxy survey to provide cosmological parameter constraints,
and have ended up with an example of a set of constraints for a particular
model.
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Abstract. Evidence for dark energy comes from a wide variety of data. Here I
discuss the role the CMB anisotropies have had in framing the dark energy problem.
After reviewing the physics of the CMB, I discuss the different methods that are
used in determining the dark energy’s density, evolution and clustering properties
and the crucial role the microwave background plays in all of these methods.

7.1 Introduction

In the last few years, the accepted cosmological model has undergone a
paradigm shift. Despite much resistance, cosmologists have been forced to ad-
mit that the Universe has begun accelerating, perhaps as the result of a new
type of repulsive matter called ‘dark energy.’ From a theoretical standpoint,
it is hard to imagine a less attractive cosmological ingredient. This invisible
dark energy has become important only very recently, and seems require a
incredibly small mass scale, of order 10−3eV . In addition, we must cope with
the coincidence that we happen to be living in a rare epoch where the dark
energy and dark matter happen to have comparable densities.

Clearly, considerable evidence is required before we accept such a radical
element in our cosmological model. For at least a decade, there have been hints
that the dark matter we saw was not sufficient to account for the observed
expansion rate of the Universe. However, it is only recently that such hints
have been more definite and other possibilities, like an open universe, have
been excluded by the data. Arguably the ‘tipping point’ came when obser-
vations of supernovae at high redshifts showed them to be dimmer and thus
further away than expected. However, this might have been argued away as a
systematic effect, had it not been for the many other observations pointing in
the same direction. The goal of this review is to show the key role observations
of the microwave background have had in making the case for dark energy.
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7.1.1 CMB and Dark Energy

Naively, the CMB seems like a terrible place to look for evidence for dark
energy. Most of the CMB anisotropies we see were created at a redshift of
z � 1000, when the Universe was very much smaller. Given that the dark
matter and dark energy densities are comparable today, the density fraction
in dark energy at that time would have been of order 10−9, far too small to
make an important dynamical impact (see Fig. 7.1).

Why then are CMB observations so relevant to the study of dark energy?
There are a number of reasons:

1. While we learn little about dark energy at z � 1000, the CMB anisotropies
can give us an inventory for virtually everything else in the Universe at
that time: baryons, dark matter, photons, neutrinos. We can extrapolate
these forward to the present to see if there is sufficient matter to explain
the observed expansion rate.

2. The CMB also imprints a standard ruler in the sky of a known size. We
use this information to constrain the Universe’s curvature and the physical
distance to the last scattering surface.

Fig. 7.1. Dark energy density versus the matter and photon densities. The
quintessence and phantom regions assume a constant equation of state. In most
models, the dark energy density was many orders of magnitude smaller than the
matter and photon densities when the CMB photons were last scattered and play
no role in the origin of the anisotropies. Only for a brief epoch are the matter and
dark energy densities comparable
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3. Not all the CMB anisotropies we see are ancient in origin. Some of them
are actually created very recently through gravitational effects or rescat-
tering. These are coeval with dark energy dominance and can be strongly
affected by it.

4. Finally, some models for dark energy can actually have appreciable matter
density at early times. For example, in ‘tracker’ models the dark energy
density tracks the dominant energy density, staying at a fixed fraction of
the total until very recently. Thus, they could potentially have an impor-
tant dynamic contribution at last scattering.

Here I will focus on the first three of these effects, where the early CMB
physics is largely unaffected by the presence of dark energy. I begin by giving
a brief overview of some of the models for dark energy, because these will
help identify its most important properties. Then I examine the physics of
the microwave background, aiming to give a physical intuition for how the
matter content of the Universe makes itself known in the CMB anisotropy
spectrum. I then look at the various ways dark energy is probed and the role
CMB observations have played, particularly with regard to the detection of
the integrated Sachs-Wolfe effect.

7.2 Models for Dark Energy

It is worth investigating briefly some of the various alternatives for explaining
the recent accelerated expansion, as it will highlight precisely which aspects
of dark energy are the most interesting to try to observe. (A more complete
overview of dark energy models can be found in the recent review by Sahni [1].)

7.2.1 Cosmological Constant

The simplest example of dark energy is the cosmological constant, which is
constant term which can be consistently added to Einstein’s equations. Un-
fortunately, the cosmological constant has a history of being introduced to
help fit observations which later turned out to be wrong. (For reviews of the
cosmological constant, see [2, 3, 4]). Einstein originally introduced it in 1917
to try to produce a static universe out of general relativity. However, when
Hubble discovered the Universe to be expanding, Einstein discarded the term,
reportedly describing it as his biggest blunder.

Unfortunately, the expansion rate measured by Hubble was much too large,
resulting in a universe too young compared to the known age of the Earth.
Some cosmologists resolved this age crisis by reintroducing the cosmological
constant which, correctly tuned, can induce a nearly static ‘loitering’ phase.
Eventually, the expansion rate was revised down, alleviating the age crisis
and allowing the cosmological constant to be discarded. However, in 1967
the ‘loitering universe’ idea was resurrected to explain an apparent excess of
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quasars at redshift of z � 2. Again, better observations ended up making
the loitering phase unnecessary, which was where things stood until recently.
It is understandable then that when the data began mounting again for a
cosmological constant, there was some resistance to the idea.

More resistance came from particle physics, which actually provides a nat-
ural candidate for a physical origin of the cosmological constant: the zero-point
vacuum fluctuations of bosonic or fermionic fields. However, the typical scale
of the cosmological constant is of order M4

cutoff , where Mcutoff is the ultra-
violet cutoff of the theory describing the fields. Using the Planck mass as the
ultraviolet cutoff gives Λplanck ∼ (1019GeV )4. The actual observations show
a cosmological constant many orders of magnitude smaller,

Λobs ∼ (10−3eV )4 = 10−120Λplanck . (7.1)

Supersymmetry provides one way of removing these contributions because the
fermionic and bosonic contributions exactly cancel out; however the fact that
we have not yet seen direct evidence for supersymmetry means the breaking
scale, which effectively becomes the new cutoff scale, must be very large >
100GeV . Even the lower energy QCD physics would produce a cosmological
constant very much larger (1041 times) than that which is observed.

Before the recent evidence for dark energy, it was hoped that another
symmetry might be found which could explain why such a large value for
the cosmological constant was not seen. The expectation was that such a
symmetry would cause the constant to be precisely zero. However, the recent
observations have left us instead with the worse problem of having to explain
an incredibly small number, and thus a large hierarchy in mass.

7.2.2 Dynamical Dark Energy

Until the evidence for dark energy became compelling, virtually the only can-
didate for accelerated expansion was a cosmological constant, a simple, one
parameter model. However, the void was soon filled with a myriad of differ-
ent dynamical dark energy models, where the energy density was no longer
constant in space or time.

A useful way of parameterising dark energy models is through the effective
equation of state, the ratio of the pressure to the energy density, w ≡ p/ρ. It
can be easily seen from the Raychaudhuri equation,

ä

a
= −4πG(ρ + 3p) = −4πGρ(1 + 3w) , (7.2)

that to get accelerated expansion, one requires wtot < −1/3. If one assumes
that a third of the present density is in the form of dark matter (p = 0), then
the equation of state of the dark energy itself needs to be wDE < −1/2 to
cause acceleration. For example, the cosmological constant has an equation of
state w = −1.
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Quintessence Models

Cosmologists were very familiar with accelerating dynamics from theories of
the early universe. Inflationary theories, typically based on scalar fields, used
a period of accelerated expansion to solve initial conditions problems of the
big bang. These were quickly adapted to the late universe observations and
collectively have become known as quintessence models [6, 11].

To produce acceleration, the energy density in the scalar fields is typically
dominated by a very weak potential. This requires a very small effective mass,
mφ < H ∼ 10−33eV [7]. For some potentials, the field is frozen at early
times, while for others (so-called ‘tracker’ models) it can slowly roll down the
potential, its energy density tracking the energy density of the dominant fluid
until very recently.

The equation of state in quintessence models generally evolves, though
with a special choice of the potential it can be constant. Indeed, it has been
shown that any w(z) > −1 history can be produced with a suitably tuned
potential [8]. Rather than focusing on the potential, often phenomenological
models for w(z) have been used, attempting to capture the essence of the
evolution by a one or two parameter fit, such as w(z) = w0 +w1(1−a), where
a is the scale factor.

Tangled Defects

One well motivated class of dark energy models arises naturally from theo-
ries of cosmological defects. Generically a phase transition occurs in the early
universe, producing either cosmic domain walls or cosmic strings [9] (or some-
thing even stranger [10].) Depending on the symmetries, these can become
tangled, resulting in a static configuration.

As the universe expands, the defect network also expands. For strings, the
total length will grow proportional to a, leading to an energy density dropping
as a−2. This leads to an equation of state of w = −1/3, just failing to produce
acceleration.

In the domain wall picture, the defect area (and thus total energy) in a
comoving volume grows as a2, leading to an energy density which drops as
a−1. This is equivalent to an equation of state of w = −2/3 (though see [11]...)
which can produce acceleration. This model however seems to be at odds with
the most recent data which seems to prefer a more negative equation of state.

Chaplygin Gas

Another proposed model for dark energy actually from a kind of behavior seen
in early studies of aerodynamics and the Chaplygin gas model [17] is named for
the Russian who introduced the effective equation of state it in that context.
This model effectively postulates an equation of state of p = −A/ρ, though
often a more generalized form is used
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p = −A/ρα . (7.3)

This leads to a density which scales as

ρ =
(
A + Ba−3(1+α)

)1/(1+α)

. (7.4)

The attraction of the Chaplygin gas model is that the dark energy scales
effectively like dark matter (p = 0) at high densities, but then can act like a
cosmological constant at low densities. Thus, it was hoped that a single fluid
could play the roles of both dark energy and dark matter. While this hope
has been excluded now by observations, Chaplygin gas is still a possibility for
explaining dark energy alone.

Phantoms and Ghosts

Motivated by early SN data which seemed to prefer w < −1, much work
has been done looking at such models, known collectively as phantom dark
energy models [13]. Such dark energy has the property that its density actually
increases as the Universe gets bigger. It can in fact diverge at a finite time, it
what has come to be called a ‘big rip’ [14].

Theoretically, such phantom models face many challenges. They violate
both the weak energy condition, and lead to negative norm states. They are
also classically and quantum mechanically unstable [15, 16].

7.2.3 Modified Gravity

Perhaps the most interesting explanation of the acceleration is not to modify
the matter content of the Universe at all, but to change instead the gravi-
tational attraction on large scales. This requires something besides general
relativity. Many proposals for doing this are being investigated, including
Brans-Dicke theory and extra-dimensional braneworld theories. (For reviews,
see the notes by Maartens in this volume [17].)

7.3 The Physics of the Microwave Background

Before going into detail the various ways the CMB can probe the dark energy,
it is worth reviewing the basics of microwave background: what it is, how it
is described and how we think the observed fluctuations arose.

7.3.1 Basics of the Microwave Background

Discovered just forty years ago, the microwave background is the relic radia-
tion left over from the big bang [18, 19]. When the Universe was much smaller,
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the radiation was much hotter; at early times it was in thermal equilibrium
with the other matter in the Universe through interactions like Thomson scat-
tering with free electrons. These interactions allowed the photon distribution
to thermalize and this thermal spectrum has been preserved through the later
expansion. Its present spectrum has been very accurately measured by the
COBE FIRAS instrument to be a blackbody spectrum to within 50 parts per
million, with a current temperature of 2.725± 0.002K [20, 21].

While the free electron density was high, the photons were tightly coupled
to them and could not travel far between interactions. However, once the
Universe cooled enough to allow the electrons and protons to become bound
in neutral hydrogen (z ∼ 1100), the free electron density dropped dramatically
and the photons were allowed to travel freely. Most of the CMB light we see
was last scattered at these redshifts. Subsequent reionization of the hydrogen
at low redshifts means that some photons can rescatter, but the low density
that this occurs means that these events are relatively rare.

Anisotropy Maps

The microwave background is to a large degree very homogeneous over the
sky. However, anisotropies have been observed at low levels, starting with a
dipole anisotropy at a level of ΔT = 3.372±0.007mK discovered in the 1970’s.
This is thought to be dominated by the Doppler effect from the motion of the
solar system with respect to the rest frame of the microwave background,
corresponding with a velocity of v = ΔT

T0
c = 360 km/s.

After many years of searching, further anisotropies were found by the
COBE satellite in 1992, at a level of one hundredth of the dipole [22]. These
observations were at the level predicted for the cold dark matter model. Subse-
quent observations by balloon, ground based and the satellite-based Wilkinson
Microwave Anisotropy Probe (WMAP) have refined these observations dra-
matically, from about thousand independent pixels in COBE to hundreds of
thousands in WMAP [23, 24].

WMAP, benefitting from observing the full sky in many frequencies, has
the best measurements of the CMB on large scales. But on scales smaller
than the WMAP beam (θ < 0.3◦), the best observations come from an array
of ground and balloon based experiments, including the VSA [25, 26], ACBAR
[27], BOOMERANG [28], MAXIMA [29] and CBI [30].

While the observations typically produce two dimensional maps on the
sky, in order to compare to theoretical predictions it is useful to expand these
maps in terms of orthogonal spherical harmonic functions:

δT (n)
T

=
∑
�,m

a�mY�m(n) . (7.5)

Such a transformation is analogous to a Fourier transform, approaching one
on suitably small patches of the sky. The multipole  value is an effective
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wavenumber, relating to the angular scale of the variations, Δθ ∼ π/ .For
each  , there are 2 + 1 values of m = − ,− + 1, . . .  . The orthogonality of
the spherical harmonic functions leads to the inverse transform,

a�m =
∫

δT (n)
T

Y ∗
�m(n)dΩn . (7.6)

Two Point Statistics

Theoretical models do not predict the precise temperature fluctuation in any
particular direction, but instead focus on the statistical properties of the maps.
If the maps are Gaussian, then the statistical properties are entirely deter-
mined by the two point statistics of the map. These are described by either the
two-point correlation function, or its Fourier analog, the temperature power
spectrum. The power spectrum of the fluctuations is defined as the expectation
of the multipole moments:

〈a�ma∗�′m′〉 = C�δ��′δmm′ , (7.7)

which follows simply from the assumption of invariance under rotations.
The two point correlation function in real space is defined as

C(θ) ≡
〈

δT (n)
T

δT (n′)
T

〉
=
∑
�,m

C�Y�m(n)Y ∗
�m(n′)=

1
4π

∑
�

(2 +1)C�P�(cos θ) ,

(7.8)
where θ is the angle between n and n′. The variance of the temperature field
is given by the correlation at zero separation, C(0) = 1

4π

∑
�(2 + 1)C�.

Cosmic Variance

If the fluctuations are Gaussian and isotropic, the multipole moments are
all independent. Measurement of the correlation function is fundamentally
limited by the fact that we observe only one sky. The power spectrum C�
is discrete, and each  value is sampled only 2 + 1 times. This results in
an unresolvable uncertainty in the spectrum measurement of δC� �

√
2C�/

(2 + 1)
1
2 . This is known as cosmic variance.

Cosmic variance is the dominant source of uncertainty for large modes; for
example, WMAP is cosmic variance limited out to  = 400 [24]. Thus, further
observations will not improve the measurement of these modes significantly,
though they could aid by improving the removal galactic foregrounds.

Polarization

In addition to temperature fluctuations, the microwave radiation can also be
linearally polarized. This polarization arises naturally in Thomson scattering
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if there is a quadrupole in the radiation which is incident on the scatter-
ing electrons. While the photons and electrons are tightly coupled, there is
no polarization. However, once the photons are able to travel some distance
between scattering events, polarization is generated at the level of the local
quadrupole. Typically, the CMB radiation is polarized at 10–15% of the level
of the anisotropy.

The two polarization degrees of freedom (amplitude and inclination angle)
can be decomposed into two kinds of fluctuations, E-type (gradient) and B-
type (curl) [31, 32]. Polarization created as the result of scalar perturbations
are purely E-type, though later non-linear processes like gravitational lensing
or Faraday rotation of the polarization planes can cause it to be mixed into
B-type. Tensor perturbations (gravity waves) and vector perturbations create
both E-modes and B-modes; thus B-modes, particularly on large scales where
they cannot be produced by gravitational lensing, may be used to determine
whether a significant portion of the observed CMB anisotropies were caused
by primordial gravity waves.

The E-modes are also correlated with the temperature fluctuations [33].
The polarization data supplements the temperature data, allowing us to con-
firm the general picture of the generation of anisotropies. There are also some
parameters for which the polarization is especially sensitive, most notably the
optical depth for rescattering after reionization, which induces a large scale
signal in the polarization auto and cross correlation functions.

The first detection of polarization has come very recently. In 2002, DASI
detected the polarization at small angular scales [34], and these observations
have been confirmed with CBI [35], CAPMAP [36] and Boomerang [37]; all
these seem to confirm the cosmological model. On large scales, WMAP has
measured the cross correlation spectrum [38] and recently produced the first
large scale autocorrelation measurements [39]. Perhaps the biggest surprise
in the first year data was the large amplitude of the cross correlation on
the largest scales, which seemed to indicate a very early reionization of the
Universe. The more recent observations however show that these were sub-
ject to foreground contamination and the reionization epoch has been revised
down.

7.3.2 Origin of the Fluctuations

In order to understand the CMB constraints on the cosmological model, it
is important to see just how the anisotropies arose. To calculate these in
detail requires a Boltzmann code, following the full evolution of the photon
distribution function [40]. A number of publically available codes are now
available to do these calculations, including CMBfast [41] and CAMB [42].
Here, rather than reviewing the full formalism (see e.g. the recent review
by Challinor [43]), I will simply try to provide some intuition for how the
predictioned spectra come about.
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Gauge Issues

There are two gauges that are typically used to describe the CMB anisotropies
and it is useful to understand both. Most numerical work (including CMBfast
and CAMB) is performed in the synchronous gauge,

ds2 = a2(τ)(−dτ2 + (δij + hij)dxidxj) . (7.9)

The conformal Newtonian gauge,

ds2 = a2(τ)(−(1 − 2Ψ)dτ2 + (1 + 2Φ)dxidxi) , (7.10)

is useful to get physical intuition, as Φ approaches the Newtonian gravitational
potential within the horizon. In addition, unlike the synchronous gauge, it
contains no residual gauge freedom, so it is useful for analytic calculations.
A nice review of these two gauges and the Boltzmann equations relevant for the
microwave background has been written by Ma and Bertschinger [44]. (Beware
that there are a number of different sign conventions in the literature!)

Density and Potential Fluctuations

On scales large enough to be superhorizon at last scattering, two effects dom-
inate the CMB anisotropies and are jointly referred to as the intrinsic fluctu-
ations. The first arises due to the fluctuations in the density of the photons
on the last scattering surface. Since the photon density is proportional to
ργ ∝ T 4, fluctuations in the temperature are related to the density fluctua-
tions by δT

T = 1
4
δρ
ρ .

In addition, there will be fluctuations in the gravitational potential on the
last scattering surface. Photons will have to climb out of (or roll down) the
gravitational potential, and will lose or gain energy. Thus, there will be an
additional fluctuation of δTT = Φ. Thus the total intrinsic term is,

δT

T
=

1
4
δρ

ρ
+ Φ . (7.11)

Note that in the absence of anisotropic stress, the Einstein equations imply
Ψ = Φ.

These two terms will be comparable for wavenumbers as they cross the
horizon, with the density contribution dominating within the horizon. If the
initial conditions are adiabatic, the photon density will be highest where the
potential is deepest and these two terms will tend to cancel. (This is not
necessarily true for isocurvature initial conditions.) In this case, it can be
shown that on horizon scales, this leads to the Sachs-Wolfe contribution,

δT

T
=

1
3
Φ . (7.12)

Note that in the synchronous gauge, only the density term is relevant; the
potential is effectively mixed between this and the line of sight term discussed
below.
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Doppler Effect

Motion of the photon-baryon fluid induces an addition fluctuation via the
Doppler effect. This leads to δT

T = vγ · n, where n is a unit vector in the
direction of the last scattering surface.

As can be seen in Fig. 7.3, the Doppler term contributes most on scales
inside the horizon. However, it is usually smaller than the density contribution.
The so-called ‘Doppler peaks’ (see Fig. 7.2) are a misnomer; the peaks are
actually dominated by the density fluctuations, not the Doppler term which
actually tends to fill in the gaps between the peaks.

Line of Sight Effects

The contribution from redshifting along the photon path can be understood
in a fairly simple way in synchronous gauge. Consider a small segment of the
path that a photon transverses in time δτ. This segment has a length given by

Fig. 7.2. Typical CMB spectra for flat and open cosmologies. The axes are chosen
such that the spectrum on large scales (� < 50) is approximately flat for a scale
invariant primordial spectrum. These large modes are outside the horizon at last
scattering and microphysics cannot act. On smaller scales, modes have time to os-
cillate acoustically before last scattering, producing the so-called Doppler peaks.
Geometrical effects cause these features to appear smaller in an open universe, and
larger in a closed universe. On very large scales, CMB anisotropies are created at
late times via the ISW effect, providing additional power at very low �
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Fig. 7.3. The top figure shows the intrinsic and Doppler contributions to the CMB
anisotropy spectrum in the synchronous gauge. The lower figure shows the ampli-
tude of the photon density fluctuations at the last scattering epoch for a range of
wavenumbers. Peaks of the density, where the fluid is most compressed, align with
the odd Doppler peaks of the CMB spectrum. Troughs of the density (rarefactions)
align with the even Doppler peaks. The true Doppler contributions are greatest when
the rate of change of the density is greatest. However, structures in the CMB spec-
trum are generally smoothed out by the projection onto the last scattering surface

δL = (gijdxidxj)1/2 = (a2(δij +hij)ninj)1/2δτ � a(1+
1
2
hijninj)δτ . (7.13)

The shift in the photon temperature over this distance is given by the
fractional change of the segment length in the period δτ ,

δT

T
|δL = − 1

δL

∂(δL)
∂τ

δτ = −
[
ȧ

a
+

1
2
ḣijninj

]
δτ . (7.14)

The first term corresponds to the usual homogeneous redshifting of photons
and the second, integrated over the whole photon path, gives the term in
Sachs-Wolfe expression (see below). Here and below, the dots represent deriva-
tives with respect to conformal time τ .

Sachs-Wolfe Equation

In synchronous gauge, these various effects are combined to give
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δT

T
=

1
4
δγ + vr · n−

1
2

∫ τf

τrec

ḣijninjdτ , (7.15)

where the dots are derivatives with respect to co-moving time and n is a unit
vector along the line of sight. This is known as the Sachs-Wolfe equation [45].

The Sachs-Wolfe equation in Newtonian gauge can be shown to be

δT

T
=

1
4
δγ + Ψ + vr · n +

∫ τf

τrec

(Φ̇ + Ψ̇)dτ . (7.16)

This is similar to the synchronous gauge expression, except the intrinsic piece
is modified to include the initial gravitational potential. The final term, which
is the contribution along the path of the photon, is known as the integrated
Sachs-Wolfe contribution.

7.3.3 Acoustic Oscillations

On smaller scales, the modes have had time to evolve within the horizon prior
to last scattering. On these scales, the anisotropies are dominated by the
intrinsic anisotropy and to a lesser extent by the Doppler effect. As a result,
the oscillations of the photon-baryon fluid take on a key roll.

Prior to recombination, the photons and baryons are strongly coupled and
thus act as a single fluid. They then share the same velocity and their densities
are related by the adiabatic condition that the number of photons per baryon
is fixed. This fluid acts as one with pressure 1

3ργ , but which has density ργ+ρb,
The speed of sound in this fluid is

c2s =
δP

δρ
=

1
3 ρ̄γ

3
4 ρ̄b + ρ̄γ

=
1

3(1 + R)
,

where R ≡ 3ρ̄b/4ρ̄γ .
The density and velocity equations can be combined into a single second

order equation to show that the density acts as a forced, damped harmonic
oscillator:

δ̈γ + c2sk
2δγ = −2

3
ḧ . (7.17)

Here for simplicity we have dropped the damping terms, which is appropri-
ate in the radiation dominated regime (c2s � 1/3.) Following decoupling, the
photons freestream and the baryons fall into the potential wells generated by
the dark matter.

The largest scale on which microphysics can act is known as the sound
horizon, and the sound horizon at the last scattering surface becomes im-
printed into the CMB and large scale structure power spectra. This scale is
given by

rS =
∫ arec

0

dt

a
cs(a) =

∫ arec

0

cs(a)
da

a2H(a)
=
∫ arec

0

cs(a)
da

H0Ω
1
2
m(a + aeq)

1
2

,

(7.18)
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where arec = 1/1100 is the scale factor at last scattering and aeq � 1/3000
is the scale factor at matter radiation equality. While the photon density
dominates over the baryon density, the sound speed is very nearly constant
cs = 1/

√
3 (it is only slightly (20%) smaller than this at last scattering), so it

is a good approximation to take it out of the integral. This gives,

rS � 2csH−1
0 Ω

− 1
2

m
√
arec

[√
1 + aeq/arec −

√
aeq/arec

]
. (7.19)

It is straight forward to show that with the best determinations of H0 and
Ωm the present size of this scale is approximately 150Mpc (e.g. [46]).

7.3.4 Features of the Power Spectrum

Many important aspects of the cosmological model can be read off of the
CMB power spectrum by looking at a few characteristic features, such as the
positions and relative amplitudes of the Doppler peaks.

Peak Positions and the Angle-Distance Relation

The photon-baryon oscillations provide a useful physical yardstick for the early
universe. By knowing the size of the sound horizon at last scattering and the
observed angular size of these features, we can infer the total curvature of the
universe from the angle-distance relation.

To get an intuition for the expected scale, let us assume that radiation-
matter equality occurred much before recombination. Then the sound speed is
constant and the sound horizon is given by rS = csτrec = cs2H−1

0

√
Ω−1
m arec.

In a flat, matter dominated, Einstein-de Sitter universe, the comoving distance
to the last scattering surface is given by rrec � 2H−1

0

√
Ω−1
m , so the angular

scale of the sound horizon at last scattering is

θ = rS/rrec = cs
√
arec � 1◦ . (7.20)

Note that the matter density dependence of rS and rrec are the same, and
cancel out in the expression for the angular scale. With a low matter density,
the radiation epoch cannot be ignored; using the exact expression for rS above
yields a slightly smaller angle, θ � 0.5◦.

If the universe is open, the comoving distance to the last scattering surface
is no longer equal to the comoving time since last scattering, but is given
instead by

rrec =
1√
k

sin
(
2 sin−1(

√
kH−1

0 Ω−1/2
m )

)
= 2H−1

0 Ω−1
m , (7.21)

where k ≡ H2
0 (Ωm − 1). (This very remarkable simplification occurs only

when the dominant matter is dust-like.) Here, the resulting angular scale of
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the sound horizon is θ = cs
√

Ωmarec. The matter dependence fails to cancel,
making this a very powerful probe of the curvature of the universe.

Finally, for universes with a cosmological constant,

rrec � τ0 = 2H−1
0 Ω−1/2

m F (Ωm) , (7.22)

where the hyper-geometric function F (Ωm) is a slowly (logarithmically) vary-
ing function of the matter density, ranging from 1 (Ωm = 1) to 0.8 (Ωm = 0.1);
it is sometimes approximated by Ω0.1

m . As in the Einstein-de Sitter case, the
dominant Ωm dependence of rS and rrec cancel, leaving a weak dependence
in the angular scale, θ � 0.5◦/F (Ωm); however, if the curvature is assumed
to be zero, this weak dependence can be used constrain the matter density or
dark energy equation of state.

Peak Heights: Probing the Matter and Baryon Densities

The heights of the Doppler peaks relative to each other and to the large scale
(low  ) anisotropies offers other important information about the cosmological
parameters.

The total matter density (baryons and dark matter) is particularly im-
portant in determining the overall amplitude of the peaks. Lowering the
matter density makes the redshift of radiation-matter equality later, zeq =
2.3× 104Ωmh2. This affects both the forcing term for the photon-baryon os-
cillations and the contributions from the early integrated Sachs-Wolfe effect.
The forcing term is stronger near radiation-matter equality, so the heights of
the Doppler peaks are higher when the matter density is lower.

The physical baryon density, Ωbh
2, is critical to the evolution of the mi-

crowave anisotropies. Recall that the photon-baryon fluid acts as a fluid with
pressure p = ργ/3 and density ρ = ρb + ργ , so that increasing the baryon
fraction at recombination makes the fluid heavier. This causes the fluid to
compress more and bounce back less, shifting the effective zero point of the
oscillations so that |δcompression| > |δexpansion|. (See Fig. 7.3.) Thus the odd
numbered Doppler peaks associated with the compression will be higher than
the even peaks associated with the rarefaction.

The shape of the primordial spectrum will also affect the relative heights of
the Doppler peaks, raising the higher peaks relative to the first Doppler peak
if the underlying spectrum is blue n > 1 and lowering them if the spectrum is
red n < 1. A large optical depth for rescattering of the photons (see below) has
a similar effect, as it will damp out more the higher peaks. These similar effects
lead to a degeneracy between n and the optical depth if only the temperature
anisotropies are observed.

Damping Effects

As the photons become less tightly coupled to the electrons near recombina-
tion, they are able to diffuse out of the matter fluctuations, effectively damp-
ing out the smallest scale modes [47]. In addition, the observed temperature
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anisotropies are blurred by the finite thickness of the last scattering surface.
These effects lead to an exponential suppression of the high  modes for which
kΔτrec ≥ 1, where Δτrec is the thickness (in comoving time) of the surface of
last scattering.

When the Universe is reionized at late times, the CMB photons can be
rescattered before reaching us, which can potentially erase the original CMB
fluctuations and create new ones. To evaluate whether reionization is impor-
tant, we must look at the optical depth

κ =
∫ t0

trei

σTnecdt , (7.23)

which is related to the probability that a photon is rescattered. (Here, σT is
the Thomson cross section and ne is the free electron density, integrated from
the onset of reionization to the present. A significant optical depth will sup-
press structure on smaller scales and will also create large scale polarization.
If κ > 1, then it is quite likely that a photon will scatter off of the ionized
medium. Recent third year WMAP measurements of the large scale polariza-
tion indicate the optical depth is closer to κ ∼ 0.1, corresponding with the
beginning of reionization of about z � 10−12, assuming that the reionization
happened all at once [39].

7.3.5 Non-linear Effects and Foregrounds

At low redshifts, non-linear effects and foregrounds can be important sources
of CMB anisotropies. These generate anisotropies in three ways: gravitation-
ally, through the rescattering of the CMB photons from reionized electrons,
and through the foreground processes which create microwave photons by
other mechanisms.

The most interesting gravitational effects are gravitational lensing and
the Rees-Sciama effect [48], which are closely related [49]. The Rees-Sciama
effect is the non-linear version of the ISW effect, where the non-linear evo-
lution of the gravitational potential in clusters leads to a line of sight CMB
anisotropy. Gravitational lensing of the CMB by foreground structures cannot
create anisotropies itself, but will distort any anisotropies that exist on small
scales. Lensing of polarization is also important, as it will induce B-modes in
a map of pure E-mode polarization; thus it is an important foreground for the
search for primordial B-modes from gravity waves.

Once the Universe is reionized, anisotropies can be generated through
the rescattering of the photons. The most important of these is the ther-
mal Sunyaev-Zeldovich effect [50], where the photons are up-scattered from
the hot gas in clusters. (This is discussed more below.) Anisotropies are also
generated by scattering off of moving electrons, either in clusters (the ki-
netic Sunyaev-Zeldovich effect [51]) or by larger bulk flows (the Ostriker-
Vishniac effect [52, 53].) Like the gravitational effects, the latter two effects
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produce anisotropies with a thermal spectrum. However, the thermal Sunyaev-
Zeldovich effect produces a characteristic distortion of the spectrum, clusters
appearing hotter at high frequencies and colder at low frequencies.

Many foreground processes can also emit in the microwave frequencies, and
any anisotropies produced by such mechanisms must be subtracted before the
cosmological anisotropies can be understood. Luckily, the significantly differ-
ent frequency spectra of the foregrounds makes such a subtraction tractable.
At high frequencies the most important foreground is from thermal emission
from dust. The primary source of this dust is in our own galaxy, where it is
typically of order 20K, heated by optical or UV radiation.

At lower frequencies, synchrotron and free-free radiation are important.
Both magnetic fields and energetic electrons are required in order to generate
synchrotron emission. Synchrotron contamination thus tends to come from the
disk of our galaxy where the magnetic fields are highest; however, it can also
come from other galaxies. Bremsstrahlung radiation, also known as free-free
radiation, results from electrons scattering off of ionized hydrogen or helium
atoms. Like synchrotron, it primarily originates from the disk of our galaxy,
where the densities of ionized particles are highest.

A nice review of CMB observations and foregrounds can be found in the
book by Partridge [54].

Sunyaev-Zeldovich Effect

For dark energy studies, the most important non-linear source is the Sunyaev-
Zeldovich (SZ) effect, inverse Compton scattering of photons off of hot elec-
trons in clusters. This effect gives a way to probe collapsed structures at high
redshifts and can measure directly the baryonic mass in clusters. Scattering off
of hotter electrons causes a simple energy shift parameterized by the Compton
y−parameter,

y =
δν

ν
=
∫

σTne
kTe
mec2

dl , (7.24)

where σT is the Thomson scattering cross section, ne is the free electron den-
sity and the integral is along the photon path through the cluster. Typical
clusters have temperatures of order 107−108K, and yield Compton-y param-
eters of order y ∼ 10−4.

The photons are upscattered, causing the low energy tail of the spectrum
to be shifted to higher frequencies,

δnν
nν

= −y
xex

ex − 1
[4− x coth(x/2)] , (7.25)

where x ≡ hν/kTγ . This results in a temperature deficit at frequencies below
the blackbody peak ΔT/T = −2y, and a temperature increase at higher
frequencies, with the sign changing at ν ∼ 220 GHz.
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A nice feature of the SZ effect is that the temperature decrement or incre-
ment does not depend on the distance to the cluster, so it provides a way of
seeing clusters at high redshifts.

7.4 Ways of Probing Dark Energy

Like dark matter, the distinguishing feature of dark energy is that we have
not seen it directly. In most models of dark energy, its principal interactions
are gravitational and most of our probes are based on testing its gravitational
influence indirectly. Unlike dark matter, however, dark energy is believed to
be smooth on small scales. Thus, we must look for its effects on cosmological
scales, and these primarily come through altering the expansion rate and its
evolution through the Friedmann equation.

The observational effects of dark energy can be broken into four classes:

1. First, we can ask how much dark energy contributes to the present ex-
pansion rate. This requires an inventory of the matter in the Universe to
discover the fraction ΩDE which is unaccounted for.

2. Next, we can look directly at how this fraction has evolved in time, by ex-
amining H(z). Measurements of the time evolution of global properties of
the Universe (ages, distances, geometry) give us quantities which depend
on different integrated functions of the Hubble parameter.

3. Changing the Hubble parameter has knock on effects onto other observable
quantities, most notably the growth of density fluctuations. We can look
for such effects in how large scale structures evolve with redshift.

4. Finally, on sufficiently large scales, the dark energy itself can cluster, and
this can also affect the very large scale clustering of the ordinary matter
and so can potentially be seen.

These tests effectively tell us what aspects of dark energy we might be able
to measure. The first will tell us what the present density of dark energy is
(ΩDE), the second and third will tell us how it has evolved (w(z)) and the
last how it clusters (the dark energy sound speed, cDE .)

A wide array of possible probes are available to us, including supernovae,
baryon oscillations, etc. But in all of these classes of probes, the microwave
background plays an important role directly, or indirectly by helping to break
parameter degeneracies.

7.4.1 Matter Inventory

The most direct way to search for dark energy is to compare the amount
of matter in various forms and see if they are sufficient to account for the
observed expansion. The Friedmann equation for the present epoch can be
written as,
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ρDE + ρCDM + ρb + ργ + ρν + k = ρcrit ≡
3H2

0

8πG
. (7.26)

The first term, ρDE ∝ ΩDEh2, is the present dark energy density we wish to
determine. The CMB anisotropies play a key role in determining virtually all
the other terms, with the exception of the critical density [55]. Uncertainties
in the determination of the Hubble constant [58] (and thus the critical den-
sity) are one of the biggst obstacles in determining the precise dark energy
density.

By far the best measured term above is the photon density, ργ , which is
given to great accuracy by measurements of the present CMB temperature.
While the photon density is small (Ωγh

2 = 2.56× 10−5), it is crucial, as the
CMB anisotropies determine the densities of the other species relative to the
photons, at the time of last scattering.

The total matter density determines how close to last scattering the matter
domination epoch was, which is reflected in the overall amplitudes of the
Doppler peaks. The CMB results confirm a host of other kinds of observations,
including the large scale structure power spectrum and measurements of the
baryon-to dark matter ratio in clusters. The measurements usually constrain
the sum of the dark matter and baryons, ΩCDMh2 +Ωbh

2 = 0.127+0.007
−0.013 [55].

The baryon density can effect the relative heights of the Doppler peaks,
and increasing it can make the odd peaks larger and the even peaks smaller.
These constraints, Ωbh

2 = 0.0223+0.0007
−0.0009 are now beginning to improve on

those limits from nucleosynthesis.
While the cosmological limits on the neutrino density come primarily from

the shape of the large scale power spectrum, CMB observations alone are
capable of constraining the neutrino masses as well, if the neutrinos are heavy
enough to to begin acting non-relativistically before last scattering [56]. The
present constraints limit it to be less than a fraction of the dark matter density,
about 1% of the total density [57].

Perhaps most importantly, the CMB observations are able to rule out
large curvature as the explanation of the missing matter. The measurements
effectively constrain |k/ρcrit| to be less than a few percent (assuming the
Hubble constant is not extremely low.)

Assuming the curvature can be neglected, the most important terms in
constraining the dark energy density are the matter density and the Hubble
constant. This dark energy density constraint is approximately given by,

ΩDE = 1− 0.13h−2 . (7.27)

This could be consistent with no dark energy if the Hubble constant is suffi-
ciently small, but such a value is strongly disfavored by direct measurements of
the Hubble constant [58]. Using more standard values of the Hubble constant
(h = 0.72) indicates a dark energy density of ΩDE � 0.75.



206 R. Crittenden

7.4.2 Expansion History

There are many ways of trying to probe the evolution of the dark energy [59].
These include measurements of the cosmic age, the comoving volume, the
luminosity distance, the angular diameter distance and the Alcock-Paczynski
tests. Each of these provides constraints on a different integral of the Hubble
parameter. (Given that the CMB indicates the Universe is nearly flat, I present
only the flat space expressions below.)

For example, age constraints, such as from globular clusters [60], can be
used to constrain

t(zform) =
∫ zform

0

dz

H(z)(1 + z)
. (7.28)

Here, zform is the redshift of the object’s formation, which is often somewhat
uncertain. Thus far the constraints are fairly weak, but there are prospects
of using other age measurements, such as of elliptical galaxies assuming they
evolve passively [61], which could improve these constraints.

Better constraints have arisen from the determination of luminosity dis-
tances to cosmologically distant objects, such as supernovae,

dL(z) = (1 + z)
∫ z

0

dz

H(z)
. (7.29)

Observations indicate that some supernovae can be used as standard candles
by using correlations between their intrinsic brightness and the evolution of
their light curves. Surveys using of order a hundred distant supernovae have
been used to put constraints on the dark energy density and evolution [5, 6].
The advantage of SN observations is that they cover a range of redshifts, and
so can provide more detailed information about the evolution of H(z).

The number density of objects as a function of redshift can also provide a
useful cosmology tool, using

d2V

dΩdz
=

1
H(z)

(∫ z

0

dz′

H(z′)

)2

. (7.30)

This has been used to constrain dark energy from strong gravitational lens-
ing on the assumption that the comoving number density of the lens galaxies
is constant [64]. In principle, one can also constrain models using Alcock-
Paczynski tests, where one looks at things expected to be isotropic on aver-
age, such as the shapes of structures or correlations functions, and compare
measurements parallel and perpendicular to the line of sight which will have
different dependencies on the geometry [65].

The quantity which is most relevant to CMB studies is the angular diam-
eter distance of the sound horizon at recombination, used earlier to show that
the Universe is very close to flat. While this most sensitively constrains the
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curvature, if we assume the curvature is zero, then it can be used to constrain
the dark energy model. Specifically what is constrained is

dA(z) =
1

(1 + zrec)

∫ zrec

0

dz

H(z)
. (7.31)

This provides only a single integrated constraint on the equation of state, but
because the CMB anisotropies are measured so well, it is an important one.

The sound horizon is also imprinted in the matter power spectrum, through
gravitational interactions with the baryons. This feature has come to be called
‘baryon oscillations.’ Unfortunately the amplitude of this effect is suppressed
because the baryons are only a fraction of the dark matter density, making
the it difficult to observe. However, it has recently been discovered by the
SDSS and 2dFRS surveys [66, 67]. A similar angular diameter constraint can
be found on the dark energy. While poorly determined at present, this has the
potential advantage of being observable in a range of redshifts, and so could
provide a better constraint. (See the review by Percival in this volume [68].)

Thus far, these kinds of ‘geometrical’ tests (dominated by the SN, CMB
and baryon oscillations) have shown that the dark energy is consistent with
a cosmological constant (w = −1), with an error on the equation of state of
order 10%.

7.4.3 Growth of Perturbations

The previous dark energy constraints directly use information about the ex-
pansion history of the Universe. However, an important class of tests constrain
the expansion history indirectly, through its impact on the growth of struc-
ture. If the Universe starts to accelerate due to the presence of dark energy,
this can make it harder for objects to collapse, changing the growth rate which
can then be observed.

If we ignore possible clustering of the dark energy, the evolution of the
growth rate of dark matter perturbations can be described by

δ̈m + 2Hδ̇m = 4πGρmδm . (7.32)

In a matter dominated universe, this has the solution δm ∝ a. However, if the
Hubble constant has additional contributions from dark energy, this increases
the damping and slows down the growth of δm.

This change in the growth rate can be measured by looking at the ampli-
tude of fluctuations as a function of time. The CMB strongly constrains the
amplitude at recombination, and this can be compared to its present value.
The amplitude today is usually parameterized by σ8, the standard deviation
of the matter fluctuations smoothed on 8h−1Mpc, the scale where the fluctua-
tions in the light are approximately unity. This quantity is surprisingly difficult
to measure accurately, and estimates are typically in the range 0.7−0.9.
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Much of the difficulty in determining the present level of fluctuations arises
because we do not usually measure the matter fluctuations directly, but rather
the fluctuations in light. Weak lensing offers a direct way out of this problem
since it is sensitive to the matter distribution itself. These observations are
still very new and still are prone to systematics, but in the future weak lensing
should be very effective in constraining dark energy [69, 70]. (Weak lensing
can also provide a geometrical test of dark energy [71].)

Another way of measuring the amplitude of the matter fluctuations is by
looking at the number of objects of a given mass which have collapsed. If
the fluctuations are Gaussian, one can calculate the fraction of volume which
exceeds a given threshold to collapse [72],

F (σ) =
2√
π

∫ ∞

δc/
√

2σ2
e−u

2
du (7.33)

(This is approximate, and corrections have been estimated taking into account
non-spherical collapse [73] and using n-body simulations [74].) This can be
used to estimate the number density of collapsed objects of a particular mass,
and in particular the cluster mass function.

The cosmology dependence is in σ, the measure of the standard deviation
of the density field which grows proportionately to the matter perturbation,
δm. Thus, the number density of haloes of a given mass as a function of redshift
is exponentially sensitive to the growth of perturbations. Surveys of clusters,
particularly those found at high redshifts using the SZ effect, could potentially
provide very strong constraints on dark energy. However, the data can be
difficult to interpret, as some problems can arise in relating the cluster masses
to the observed temperature fluctuations [75]. (See the review by P. Tozzi [76]
in this volume.)

7.4.4 Dark Energy Clustering

The previous discussion focused on how the accelerated expansion triggered
by the dark energy impacts the growth of structure. However, this is only
part of the story. With the exception of a cosmological constant, dark energy
is expected to cluster on sufficiently large scales. The scale on which this
happens is determined by the sound speed of the dark energy fluid, cDE .
The dark energy sound speed is an important way to potentially discriminate
between dark energy models (see Fig. 7.4).

For typical dark energy models, such as quintessence, the sound speed is
very near the speed of light, meaning the scales on which the dark energy
clusters are of order the horizon. Most measurements of the growth of per-
turbations, such as weak lensing or the abundance of clusters, are on scales
much too small to be sensitive to the dark energy perturbations. One way to
probe the structure on large scales is with the integrated Sachs-Wolfe effect.
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Fig. 7.4. The linear growth factor as a function of scale factor for different cosmolo-
gies. In the matter dominated cosmology, the growth rate is linear in the scale factor.
With dark energy, the late acceleration makes it harder for structures to collapse,
slowing the rate of growth. Normalized to the level of structure presently observed,
dark energy models predict more structure at high redshifts. Thus, one expects to
observe more high redshift clusters in such models

7.5 The Integrated Sachs-Wolfe Effect

The integrated Sachs-Wolfe (ISW) effect results from the line of sight integral
in the Sachs-Wolfe equation. CMB photons pass through peaks and wells of
the gravitational potential along their way to us. As they fall into a potential
well, photons gain energy; if the well is not evolving, the photons lose the
same energy when they climb out, leaving no net change. However, if the
gravitational potentials decay while the photons pass through, then the energy
that they lose climbing out is less that what they gained falling in, leaving a
net shift in the photon temperature.

Both the ISW and Rees-Sciama effect arise in this way; the ISW effect
is generally taken to be the contribution from the linear evolution of the
gravitational potential, while the Rees-Sciama effect arises from the non-linear
evolution of the potential in clusters. While the non-linear effect is inevitable,
the linear effect depends on the cosmological model and requires that the
background equation of state changes. This happens at early times as the
universe goes from being radiation dominated to matter dominated, and can
also occur at late times as the dark energy (or curvature) takes over from the
matter.

The evolution of the gravitational potential can be related to the linear
density perturbation via Poisson’s equation in Fourier space,

Φ = −4πGa2

k2
ρ̄mδm , (7.34)



210 R. Crittenden

where k is the comoving wave number. Since the matter density is proportional
to ρm ∝ a−3, we see that the gravitational potential evolves as Φ ∝ δm/a.
As we saw above, in the matter dominated regime δm ∝ a, meaning the
gravitational potential is constant in time: the collapse of the perturbations is
exactly balanced by the dilution of the matter. However, when dark energy or
curvature begins to dominate, the growth of perturbations is slowed, and the
gravitational potentials begin to decay, giving rise to the late time ISW effect.

Unlike the ISW perturbations generated at the earlier radiation-matter
transition, the ISW anisotropies generated at late times are virtually uncor-
related with the CMB fluctuations generated at the last scattering surface.
Thus, the CMB sky we see is effectively composed of two independent maps,
those fluctuations created at last scattering or soon afterwards, and those cre-
ated at low redshifts when dark energy or curvature has become dynamically
important (see Fig. 7.5.)

The spectrum of the temperature anisotropies generated by the late-time
ISW effect is shown in Fig. 7.6. It is predominantly on very large scales, and
for typical models, it is not as large as the anisotropies from the last scattering
surface. It is dominated by modes which are of the horizon size, because it
is these modes which will have the most time for the potential to change as
the photons pass through. For smaller scale perturbations, photons can get
many positive and negative smaller amplitude contributions which will tend
to cancel out.

7.5.1 Detecting the ISW Effect with Cross Correlations

How can we determine whether the CMB fluctuations we see are generated
at early or late times? Unlike many foregrounds, the ISW fluctuations have
the same frequency spectrum as the primordial anisotropies, so we cannot
use different frequency observations to isolate them. We can attempt to look
for the additional power in the CMB auto-correlation spectrum, but this is
difficult because the ISW amplitude is small and where it is largest, cosmic
variance is also large (Fig. 7.6.) This makes direct detection difficult.

However, we do know that the ISW anisotropies will be produced by local
(z < 2) fluctuations in the gravitational potential, and this we can determine if
we know how the matter is distributed on large scales. While the gravitational
potential is difficult to reconstruct, we can use the observed galaxy density as
a way of tracing it. If the gravitational potential is decaying, statistically we
expect overdensities of galaxies to align with temperature hot spots and under
densities with temperature coldspots. Thus we can constrain our cosmological
model by looking for cross correlations between the CMB maps and large scale
distribution of matter [77, 78].

Detecting the cross correlations is difficult, as it requires both a good map
of the CMB on large scales and a map of the galaxy distribution which is both
deep and covers a large fraction of the sky [77, 79, 80]. Large sky coverage
is essential because the primordial fluctuations act effectively like noise when
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Fig. 7.5. Large scale CMB anisotropies arising in the early and late universe. Only
the late contributions from the ISW effect on large scales are shown; non-linear
effects like the Sunyaev-Zeldovich effect and the Rees-Sciama effect will arise on
smaller scales

searching for anisotropies generated recently, and so the measurements are
always ‘noise’ dominated. The first attempts of detecting the correlation using
the COBE data and maps of the X-ray background (believed to trace AGN)
or radio galaxy distribution produced no detections [81, 82].

However, the picture improved greatly with the WMAP observations. Cor-
relations were quickly seen with the hard X-ray background [83], the NVSS
radio galaxy survey [83, 84], the APM galaxy survey [85], the SDSS [86, 87, 88]
and the 2MASS survey [89]. While all the detections are at a low significance
(2−3σ), it is encouraging that they are seen is such a broad range of surveys,
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Fig. 7.6. Typical auto and cross correlation functions for the ISW effect in a cos-
mological constant model. The late ISW adds a small amount of large scale power to
the temperature maps, largely uncorrelated with the anisotropy arising from early
times. The cross correlation itself (shown in arbitrary units) peaks on scales of a few
degrees

from the radio and infrared to the optical and X-ray. More recent analyses have
improved the significance of the detections using wavelet techniques [90, 91],
and seen correlations with new SDSS data [92, 93].

The various cross correlation measurements have been combined to give
constraints on cosmological models [94, 95]. While the limits are still rel-
atively weak, the cross correlation measurements constitute direct physical
evidence of dark energy, giving independent confirmation of our cosmological
model. With improved large scale structure data, future observations will im-
prove these measurements and may be able to break parameter degeneracies
of the dark energy model [38, 97, 98]. However, the ‘noise’ from the primordial
anisotropies fundamentally limits how well cross correlations can ever be de-
tected, with an ideal signal to noise of approximately 10 in the most optimistic
models [77, 80].

Despite this limitation, cross correlation studies are crucial as they offer an
important window on the clustering of the dark energy. Few other probes are
on sufficiently large scales to see this clustering, and including the dark energy
perturbations makes a significant impact on the ISW anisotropies [99, 100].
Given the uncertainties, the present constraints on the sound speed are fairly
weak; however, ultimately cross correlation measurements should be able to
discriminate between different sound speeds [101].

7.6 Conclusions and Future Prospects

Dark energy and the accelerated expansion of our Universe are clearly sur-
prising results, dramatically changing our cosmological picture. Given our
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theoretical prejudices against most dark energy explanations, it is very im-
portant to investigate whether an alternative model might also be able to
explain the same observations.

One possibility, is that the Universe is actually flat and matter dominated,
but with a very low Hubble constant [102]. As discussed above, this can alle-
viate the constraints coming from the matter inventory. However, in addition
to the tension with direct measurements of the Hubble constant, the model
requires a well placed feature in the primordial power spectrum and massive
neutrinos in order to reproduce the observed large scale clustering. Even so,
other evidence supporting dark energy, such as the SN luminosity distance
measurements and the cross correlation observations, must be accounted for
by non-cosmological means. But perhaps the biggest challenge for this model
is the angular scale of the observed baryon oscillations [103]. Though this
model cannot be conclusively ruled out, the preponderance of the data seem
to be against it.

The cosmological constant model is significantly simpler and seems to
be favored if we accept all of the data at face value. However, we have no
theoretical explanation for such a small cosmological constant. If we take the
large theoretical priors, we seem to find ourselves in a very unlikely situation.
While anthropic arguments may alleviate this concern for some, the data really
seem to demand a better theory.

It is worth considering the implications of taking the prior on the cosmo-
logical constant seriously. Models are usually compared by looking at their
Bayesian evidence, which is roughly the likelihood of the best fit model times
the prior probability of the model being near the best fit. If we assume a uni-
form distribution on the cosmological constant value, this prior probability is
incredibly tiny. Compare this to any other model, no matter how unlikely it
might seem or how poorly it explains the observations; as long as it did not
have this small prior factor, it would win out in comparison.

For example, suppose we believed that there could reasonably exist a sym-
metry which would cause the cosmological constant to be precisely zero. We
would then need to choose between two hypotheses: either the cosmological
constant is zero, or it is non-zero with a value anywhere between −Λplanck and
Λplanck. If we assume a uniform distribution of possible values for Λobs, then
an extremely small fraction of the parameter space (∼ 10−120) is consistent
with the observations. Thus, the zero cosmological constant model would be
preferred unless the data rule it out to a large significance; naively setting

e−(S/N)2/2 ≤ 10−120 (7.35)

we would require that a detection at the 24σ level to conclude that the cos-
mological constant was not zero. (Starkman and Trotta have made a similar
argument [104].) If one believes in supersymmetry, the required significance
drops to 16σ. At present, the data are not yet near this level, especially given
the possible systematic errors involved; thus anyone who thought there was



214 R. Crittenden

even a slight chance such a Λ = 0 symmetry existed (even at the one in a
million level) should safely conclude there is no cosmological constant.

Luckily, astronomers do not hold themselves to such high standards; the
evidence for dark energy is very good and has convinced much of the com-
munity that it does exist. But there is desperate need for a better theoretical
understanding of dark energy and for better observational determination of
its properties.

On the observational front at least, we can guarantee that progress will
be made (perhaps eventually even to the 20σ detection level!) With the
projects currently underway and in development, observations of the mi-
crowave background, high redshift supernovae, weak lensing and large scale
structure should continue to improve for some time; at the same time, ob-
servers continue to look for new ways of probing dark energy. These new data
will be crucial if we are to solve the mystery that is dark energy.
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Abstract. In this talk we present a pedagogical review of scalar field dynamics.
The main emphasis is put on the underlying basic features rather than on concrete
scalar field models. Cosmological dynamics of standard scalar fields, phantoms and
tachyon fields is developed in detail. Scaling solutions are discussed emphasizing
their importance in modelling dark energy. The developed concepts are implemented
in an example of quintessential inflation. A brief discussion of scaling solutions for
coupled quintessence is also included.

Accelerated expansion seems to have played an important role in the dy-
namical history of our universe. There is a firm belief, at present, that uni-
verse has passed through inflationary phase at early times and there have been
growing evidences that it is accelerating at present. The recent measurement
of the Wilkinson Microwave Anisotropy Probe (WMAP) in the Cosmic Mi-
crowave Background (CMB) made it clear that (i) the current state of the uni-
verse is very close to a critical and that (ii) primordial density perturbations
that seeded large-scale structure in the universe are nearly scale-invariant and
Gaussian, which are consistent with the inflationary paradigm. As for the cur-
rent accelerating of universe, it is supported by observations of high redshift
type Ia supernovae treated as standardized candles and, more indirectly, by
observations of the cosmic microwave background and galaxy clustering. The
criticality of universe supported by CMB observations fixes the total energy
budget of universe. The study of large scale structure reveals that nearly 30
percent of the total cosmic budget is contributed by dark matter. Then there
is a deficit of almost 70 percent; the supernovae observations tell us that the
missing component is an exotic form of energy with large negative pressure
dubbed dark energy [1, 2, 3, 4]. The recent observations on baryon oscillations
provides yet another independent support to dark energy hypothesis. The idea
that universe is in the state of acceleration is slowly establishing in modern
cosmology.

The dynamics of our universe is described by Einstein equations in which
the contribution of energy content of universe is represented by energy
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momentum tensor appearing on RHS of these equations. The LHS repre-
sents pure geometry given by the curvature of space time. Einstein equations
in their original form with energy momentum tensor of normal matter can
not lead to acceleration. There are then two ways to obtain accelerated ex-
pansion, either by supplementing energy momentum tensor by dark energy
component or by modifying the geometry itself. In the frame work of Dvali-
Gabadadze-Porrati (DGP) brane worlds [5], the extra dimensional effects can
lead to late time acceleration. The other alternative which is largely moti-
vated by phenomenological considerations is related to the introduction of
inverse powers of Ricci scalar in the Einstein Hilbert action [6]. The third
intriguing possibility is provided by Bekenstein relativistic theory of modified
gravity [7, 8, 9] which apart from spin two field contains a vector and a scalar
field.

Due to the simplicity of the mechanism, most of the work in cosmology
related late time acceleration is attributed to the assumption that within the
framework of general relativity, cosmic acceleration is sourced by an energy-
momentum tensor which has a large negative pressure. The simplest candidate
of dark, yet most difficult from field theoretic point of view, is provided by
cosmological constant. Due to its non evolving nature it is plagued with fine
tuning problem which can be alleviate in dynamically evolving scalar field
models. A variety of scalar field models have been conjectured for this pur-
pose including quintessence [10, 11], phantoms [12, 13, 14], K-essence [15] and
recently tachyonic scalar fields [16]. In this talk we present a review of cosmo-
logical dynamics of quintessence, phantoms and rolling tachyons. We describe
in detail the concepts of field dynamics relevant to cosmic evolution with a
special emphasis on scaling solutions. The example of quintessential inflation
is worked out in detail.

We employ the metric signature (-,+,+,+) and use the reduced Planck
mass M−2

p = 8πG ≡ κ2. In certain places we have adopted the unit Mp = 1.
Finally we should mention that our list of references is restricted, in most of
the places, we referred to reviews to help the readers.

8.1 Glimpses of FRW Cosmology

The Friedmann-Robertson-Walker (FRW) model is based on the assumption
of homogeneity and isotropy which is approximately true at very large scales.
The small deviation from homogeneity at early epochs played very important
role in the dynamical history of our universe. The small density perturbations
are believed to have grown via gravitational instability into the structure we
see today in the universe. the origin of primordial perturbations is quantum
mechanical and is out side the scope of standard big bang model. In what fol-
lows we shall review main features of FRW model necessary for the subsequent
sections.
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Homogeneity and isotropy forces the metric of space time to assume the
form [17]

ds2 = −dt2 + a2(t)
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
,

k = 0,±1 , (8.1)

where a(t) is cosmic scale factor. Coordinates r, θ and φ are known as comoving
coordinates. A freely moving particle comes to rest in these coordinates.

Equation (8.1) is purely a kinematic statement. In this problem the dy-
namics is associated with the scale factor− a(t). Einstein equations allow to
determine the scale factor provided the matter content of universe is specified.
Constant k occurring in the metric (8.1) describes the geometry of spatial sec-
tion of space-time. Its value is also determined once the matter distribution
in the universe is known. Observations have repeatedly confirmed the spa-
tially flat geometry (k = 0) in confirmation of the prediction of inflationary
scenario.

8.1.1 Evolution Equations

The differential equations for the scale factor and the matter density follow
from Einstein equations

Gμ
ν ≡ Rμ

ν −
1
2
δμνR = 8πGT μν , (8.2)

where Gμ,ν is the Einstein tensor, Rμν is the Ricci tensor which depends on
the metric and its derivatives and R is Ricci scalar. The energy momentum
tensor Tμν assumes a simplified form reminiscent of ideal perfect fluid in FRW
background

T μν = Diag (−ρ, p, p, p) . (8.3)

In this case the components of Gμν can easily be computed

G0
0 = − 3

a2

(
ȧ2 + k

)
(8.4)

Gj
i =

1
a2

(
2aä + ȧ2 + k

)
(8.5)

and all the other components of Einstein tensor are identically zero. Equations
(8.2) then give the two independent equations

H2 ≡ ȧ2

a2
=

8πGρ

3
− k

a2
(8.6)

ä

a
= −4πG

3
(ρ + 3p) . (8.7)
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The energy momentum tensor is conserved by virtue of the Bianchi identity
ΔνGμ

ν = 0 leading to the continuity equation

ρ̇ + 3H(ρ + p) = 0 . (8.8)

Equations (8.6), (8.7) & (8.8) make a redundant set of equations convenient
to use; one of the two (8.7) & (8.8) can be obtained using the other one
and the Hubble (8.6). These equations supplemented with the equation of
state p(t) = p(ρ) uniquely determine a(t), p(t) and ρ(t). Constant k also gets
determined

k

a2
= H2 (Ω(t)− 1) , (8.9)

where Ω = ρ/ρc is the dimensionless density parameter and ρc = 3H2/8πG
is critical density. The matter distribution clearly determines the spatial ge-
ometry of our universe namely

Ω < 1 or ρ < ρc → k = −1 (8.10)
Ω = 1 or ρ = ρc → k = 0 (8.11)
Ω > 1 or ρ > ρc → k = 1 . (8.12)

In case of k = 0, the value the scale factor at the present epoch a0 can
be normalized to a convenient value, say, a0 = 1. In other cases it should be
determined using the observed values of H0 and Ω(0) from the relation a0H0 =(
|Ω(0) − 1|

)−1/2
. Observations on cosmic micro wave background radiation

support the critical universe which is one of the predictions of inflation. We
would therefore assume k = 0 in the subsequent description.

Acceleration

We now turn to the nature of expansion which is determined by the matter
content in the universe. Equation (8.7) should be contrasted to the analogous
situation in Newtonian gravity

R̈ = −4π
3

GρR (8.13)

where R denotes the distance of the test particle from the center of a homoge-
neous sphere of mass density ρ. In general theory of relativity (GR), unlike the
Newtonian case, pressure contributes to energy density and may qualitatively
modify the dynamics. Indeed, from (8.7) we have

ä > 0 if p < −ρ

3
(8.14)

ä < 0 if p > −ρ

3
. (8.15)

Accelerated expansion, thus, is fuelled by an exotic form of matter of large
negative pressure dubbed dark energy which turns gravity into a repulsive
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force. The simplest example of a perfect fluid of negative pressure is provided
by cosmological constant associated with ρ = constant. In this case the conti-
nuity (8.8) yields the relation p = −ρ. A host of scalar field systems can also
mimic negative pressure.

Assuming that the universe is filled with perfect barotropic fluid with
constant equation of state parameter w = p/ρ yields

ρ ∝ a−3(1+w) (8.16)

a(t) ∝ t
2

3(1+w) (w > −1) (8.17)
a(t) ∝ eH t (w = −1) . (8.18)

The last equation corresponds to cosmological constant which can be added
to the energy momentum tensor of the perfect fluid. Interestingly, in four
dimension and at the classical level, the only modification Einstein equations
allow is associated with Tμν → +Tμν +Λgμν . Historically such a modification
was first proposed by Einstein to achieve a static solution which turns out
to be unstable. It was later dropped by him after the Hubble’s discovery. In
presence of Λ, the evolution equations modify to

H2 =
8πG

3
+

Λ

3
, (8.19)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (8.20)

From (8.20), it clearly follows that Λ term contributes negatively to the pres-
sure term and hence exhibits repulsive effect.

Age Crisis and Cosmological Constant

Apart from the dark energy problem, cosmological constant has other impor-
tant implications, in particular, in relation to the age problem. In any cosmo-
logical model with normal form of matter, the age of universe falls short as
compared to the age of some well known old objects found in the universe.
Remarkably, the presence of Λ can resolve the age problem. In order to appre-
ciate the problem, let us first consider the case of flat dust dominated universe
(Ωm = 1)

a(t) ∝ t2/3 → H0 =
2

3t0
. (8.21)

The present value of the Hubble parameter H0 is not accurately know by the
observations

H−1
0 = h−10.98× 1010years , (8.22)

0.8 < h < 0.64→ to = (8− 10)× 109years . (8.23)

This model is certainly in trouble as its prediction for age of universe fails
to meet the solar age constraint − t0 > (11 − 12)× 109years. One could try
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to improve the situation by invoking the open model with Ω
(0)
m < 1. In this

case the age of universe is expected to be larger than the flat dust dominated
model− for less amount of matter, it would take longer for gravitational in-
teraction to slow down the expansion rate to its present value. Indeed, in this
case we have the exact expression

H0t0 =
1

1−Ω
(0)
m

− Ω
(0)
m

2(1−Ω
(0)
m )3/2

cosh−1

(
2−Ω

(0)
m

Ω
(0)
m

)
(8.24)

from which follows that

H0t0 = 1, for Ω(0)
m → 0 , (8.25)

H0t0 =
2
3
, for Ω(0)

m → 1 . (8.26)

For obvious reasons, in case of the closed universe, the age would even be
smaller than 2/3H−1

0 . Though the age of universe is larger than 2/3H−1
0 for

vanishingly small value of Ω(0)
m , such a model is note viable as Ω

(0)
m � 0.3 and

universe is critical to a good accuracy. The problem can be solved in a flat
universe dominated by cosmological constant. In fact, in a flat universe with
two components (Ω(0)

m + Ω
(0)
Λ = 1), the Hubble equation

(
ȧ

a

)2

= H2
0

[
Ω(0)
m

(a0

a

)2

+ Ω
(0)
Λ

]
(8.27)

has the solution

a

a0
=

(
Ω

(0)
m

Ω
(0)
Λ

)1/3

sinh2/3

(
3
2
Ω(0)
m

1/2
H0t

)
, (8.28)

which at t = t0 yields the following expression for the age of universe

t0 =
2
3

H−1
0

Ω
(0)
Λ

1/2
ln

⎛
⎝1 + Ω

(0)
Λ

1/2

Ω
(0)
m

1/2

⎞
⎠ . (8.29)

In Fig. 8.1, we have plotted the age t0 versus Ωm. The age of universe is
larger than H−1

0 for a Λ dominated universe. The numerical value of t0 (t0 �
0.96H−1

0 ) is comfortable with observations for popular values of Ω
(0)
m = 0.3

and Ω
(0)
Λ = 0.7.

Super Acceleration

So far, we have restricted our attention to fluids with equation’ of state pa-
rameter w ≥ −1. The case of w < −1 corresponds to phantom dark energy
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Fig. 8.1. Age of universe (in the units of H−1
0 ) is plotted against Ω
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m in a flat

model (solid line) with Ω
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(0)
Λ = 1 and matter dominated model (dashed line)

with Ω
(0)
m = 1

and requires separate considerations. The power law expansion a(t) ∼ tn(n =
2/3(1+w)) corresponds to shrinking universe for n < 0 (w < −1). The situa-
tion can easily be remedied by changing the sign of t and by introducing the
origin of time ts

a(t) = (ts − t)n , (8.30)

which is the generic solution of evolution equations for super-negative values
of w and it gives rise to a very different future course of evolution

H =
n

ts − t
(8.31)

R = 6

[
ä

a
+
(

ȧ

a

)2
]

= 6
n(n− 1) + n2

(ts − t)2
. (8.32)

The Hubble expansion rate diverges as t → ts corresponding to infinitely
large energy density after a finite time in future. The curvature also grows to
infinity as t→ ts. Such a situation is referred to Big Rip singularity. Big Rip
can be avoided in specific models of phantom field with variable equation of
state. It should also be emphasized that quantum effects become important
in a situation when curvature becomes large. In that case one should take
into account the higher order curvature corrections to Einstein Hilbert action
which crucially modifies the structure of singularity.
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8.1.2 Scalar Fields− As Perfect Fluids in FRW Background

Scalar fields naturally arise in unified models of interactions and also in string
theory. Since the invent of inflation, they continue play an important role
in cosmology. They are frequently used as candidates of dark energy. In the
recent years a variety of scalar field models namely quintessence, phantoms,
tachyons, K-essence, dilatonic ghosts and others have been investigated in the
literature. In what follows we briefly describe some of these systems. Their
dynamics will be dealt with in detail in Sect. III.

Standard Scalar Field

Let us consider the scalar field minimally coupled to gravity

S = −
∫ (

1
2
gμν∂μφ∂νφ + V (φ)

)√
−gd4x . (8.33)

The Euler Lagrangian equation

∂μ
δ(
√−gL)
δ∂μφ

− δ(
√−gL)
δφ

= 0 , (8.34)
√
−g = a3(t)

for the action (8.33) in case of a homogeneous field acquires the form

φ̈ + 3Hφ̇ + Vφ = 0 , (8.35)

which is equivalent to the conservation equation

ρ̇

ρ
+ 3H(1 + w) = 0 . (8.36)

The energy momentum tensor

Tμν = −2
1√−g

δS

δgμν
(8.37)

for the field φ which arises from the action (8.33) is given by

Tμν = ∂μφ∂νφ− gμν

[
1
2
gμν∂μφ∂νφ + V (φ)

]
. (8.38)

In the homogeneous and isotropic universe, the field energy density ρφ and
pressure pφ obtained from Tμν are

T00 ≡ ρ =
φ̇2

2
+ V (φ), T ii ≡ p =

φ̇2

2
− V (φ) . (8.39)
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The field evolution equation (8.35) formally integrates to

ρ = ρ0e
−6

∫ (
1− 2V

φ̇2+2V

)
da
a . (8.40)

Thus the scaling of field energy density crucially depends upon the ratio of
kinetic to potential energy. Depending upon the scalar field regime ρ can
mimic a behavior ranging from cosmological constant to stiff matter

ρ ∼ a−m 0 < m < 6 . (8.41)

This behavior is also clear intuitively namely the field φ rolling slowly along
the flat wing of the potential gives rise to p � −ρ where as it gives p � ρ
while dropping fast along the steep part of the potential. Interestingly, one
can obtain the similar picture in the oscillatory regime for a power law type
of potential.

Acceleration During Oscillations

As the scalar field evolves towards the minimum of its, the slow role ceases
and a the scalar field enters into the regime of quasi periodic evolution with
decaying amplitude. In what follows, we shall assume that the potential is even
and has minimum at φ = 0 . When the field initially being displaced from
the minimum of the potential, rolls below its slow roll value, the coherence
oscillation regime, ν >> H , commences. The evolution equation can then
be approximately solved by separating the two times scales namely the fast
oscillation time scale and the longer expansion time scale. On the first time
scale, the Hubble expansion can be neglected, and one obtain φ as a function
of time;

t− t0 = ±
∫

1√
2(Vm − V (φ))

dφ , (8.42)

where ρ ≡ Vm ≡ V (φm); Vm being the maximum current value of the potential
energy and φm being the field amplitude. On the longer time scale ρ and φm
slowly decrease because Hubble damping term in (1). The average adiabatic
index γ is defined as

γ =
〈

ρ + p

ρ

〉
=

〈
φ̇2

ρ

〉
, (8.43)

where< . > denotes the time average over one oscillation. Equation (4) then
tells that expansion during oscillations would continue (ä > 0) if γ < 2

3 . The
adiabatic evolution of a(t) and ρ is given by,

a(t) ∝ t
2
3γ , (8.44)

ρ ≡ V (φm) ∝ t−2 . (8.45)
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As φ̈ = −dV
dφ , the condition γ < 2

3 can equivalently be written

γ =

〈
φ̇2

ρ

〉
=

< φV,φ >

Vm
= 2(1− < V >

Vm
) ,

= 2

∫ φm

0
(1− V (φ)/Vm)

1
2 dφ∫ φm

0 (1− V (φ)/Vm)−
1
2 dφ

=
2p

p + 1
, (8.46)

for a power law potential V ∼ φ2p, which gives the average value of the
equation of state parameter

〈w〉 =
p− 1
p + 1

, p < 1/2 → acceleration . (8.47)

Thus a quadratic potential, on the average, mimics dust where as the quartic
potential exhibits radiation like behavior. It is really interesting that the scalar
field in oscillatory regime can give rise to dark energy for p < 1/2.

While developing scalar fields models of dark energy, it is important to
have some control on its dynamics. In what follows we show how to construct
a field potential viable to desired cosmic evolution.

Construction of Field Potential for a Given Cosmological Evolution

After the invent of cosmological inflation, scalar field models have been fre-
quently used in cosmology in various contexts; they play a central role specially
in modelling dark energy. Our focus in the review will also be around these
models. We should, however, caution the reader that the scalar field models
have limited predictive power. The merits of these models should therefore be
judged on the basis of generic features that might emerge in them. Indeed,
for a priori given cosmological evolution, we can always construct a field po-
tential that would produce it. We shall illustrate this simple fact in case of a
power law expansion for a general cosmological background governed by the
Friedmann equation

H2 =
ρq

A
, (8.48)

where q = 2, 2/3 correspond to Randall-Sundrum (RS) and Gauss-Bonnet
(GB) brane worlds respectively; A is a constant which takes different values
in different patches. We show below how to construct the field potential for
ordinary scalar field propagating in a general background described by (8.48).

φ̈ + 3Hφ̇ +
dV

dφ
. (8.49)

Using (8.36) and (8.48) we obtain

1 + w = −
(

2
3q

)
Ḣ

H2
. (8.50)
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From evolution equation (8.49) and the expression φ̇2 = V (1 + w)(1 − w)−1,
we have the differential equation for the field potential V

V̇

V
= − ḟ + 6Hf

1 + f
, (8.51)

where f = (1 + w)(1 − w)−1. Integrating (8.51) respecting (8.50), we get

V (t) =
C

3q

(
3qH2 + Ḣ

H2(q−1)/q

)
, (8.52)

where C = A1/q is an integrating constant. Expressing f in terms of H and
its derivative through (8.50) and using (8.51), we obtain the φ(t)

φ(t) =
(

2C
3q

)1/2 ∫ [
− Ḣ

H2(q−1)/q

]1/2

dt . (8.53)

Equations (refpoteq) and (8.53) allow to find the field potential with a given
expansion dynamics prescribed by a(t). For a(t) ∼ tn, we are interested, we
have

φ− φ0 = Dnqt
(q−1)/q , (8.54)

V (t) = Cn2/q

(
1− n−(q+2)/2q

3q

)
t−2/q , (8.55)

where Dnq = n(2−q)/q(2C/3q)1/2(q/q − 1) and q 
= 1. Combining (8.54) and
(8.55) we get the expression for the potential as function of φ

V (φ) = V0φ
−(2/q−1) . (8.56)

In case q = 1, the field logarithmically depends on time t and (8.56) leads
to the well known exponential potential. For q = 2 corresponding to RS, we
obtain V (φ) ∼ 1/φ2. The case of high energy GB regime (q = 2/3) leads to
the power law behavior of V (φ)

V (φ) = V0φ
6 . (8.57)

Phantom Field

All these models of scalar field lead to the equation of state parameter w
greater than or equal to minus one. However, the recent observations do not
seem to exclude values of this parameter less than minus one. It is therefore
important to look for theoretical possibilities to describe dark energy with
w < −1 called phantom energy. In our opinion, the simplest alternative is
provided by a phantom field, scalar field with negative kinetic energy. Such a
field can be motivated from S-brane constructs in string theory. Historically,
phantom fields were first introduced in Hoyle’s version of the Steady State
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Theory. In adherence to the Perfect Cosmological Principle, a creation field
(C-field) was for the first time introduced [12] to reconcile with homogeneous
density by creation of new matter in the voids caused by the expansion of
Universe. It was further refined and reformulated in the Hoyle and Narlikar
theory of gravitation [13]. Though the quantum theory of phantom fields is
problematic, it is nevertheless interesting to examine the cosmological conse-
quences of these fields at the classical level.

The Lagrangian of the phantom field minimally coupled to gravity is
given by

L = (16πG)−1R +
1
2
gμν∂φμ∂φν − V (φ) , (8.58)

where V (φ) is the phantom potential. The kinetic energy term of the phantom
field in (8.58) enters with the opposite sign in contrast to the ordinary scalar
field (we remind the reader that we use the metric signature, -,+,+,+). In
a spatially flat FRW cosmology, the stress tensor that follows from (8.58)
acquires the diagonal form Tαβ = diag (−ρ, p, p, p) where the pressure and
energy density of field φ are given by

ρ = − φ̇2

2
+ V (φ) , p = − φ̇2

2
− V (φ) . (8.59)

The corresponding equation of state parameter is now given by

w ≡ p

ρ
=

φ̇2

2 + V (φ)
φ̇2

2 − V (φ)
. (8.60)

For ρ > 0, w < −1.
The equations of motion which follow from (8.58) are

Ḣ =
1

2M2
p

φ̇2 (8.61)

H2 =
1

3M2
p

ρφ (8.62)

φ̈ + 3Hφ̇ = V ′(φ) . (8.63)

Note that the evolution equation (8.63) for the phantom field is same as that
of the normal scalar field with inverted potential allowing the field with zero
initial kinetic energy to roll up the hill; i.e. from lower value of potential to
higher one. At the first look such a situation looks pathological. However, at
present, the situation in cosmology is remarkably tolerant to any pathology if
it can lead to a viable model.

As mentioned above the equation of state parameter with super negative
values leads to Big Rip which can be avoided in a particular class of models.
For instance, let us consider consider a model with
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V (φ) = V0

[
cosh

(
αφ

Mp

)]−1

. (8.64)

Due to its peculiar properties, the phantom field, released at a distance from
the origin with zero kinetic energy, moves to wards the top of the potential
and crosses over to the other side and turns ba ck to execute the damped
oscillation about the maximum of the potential (see Fig. 8.2). After a certain
period of ti me the motion ceases and the field settles on the top of the
potential permanently to mimic the de-Sitter like behavior (w = −1).

Rolling Tachyon

It was recently suggested that rolling tachyon condensate, in a class of string
theories, might have interesting cosmological consequences. It was shown by
Sen [16] that the decay of D-branes produces a pressure-less gas with finite
energy density that resembles classical dust. Rolling tachyon has an interesting
equation of state whose parameter smoothly interpolates between −1 and 0.
Attempts have been made to construct viable cosmological model using rolling
tachyon field as a suitable candidate for inflaton, dark matter or dark energy
(see [3] and references therein for details). As for the inflation, the rolling
tachyon models are faced with difficulties associated with reheating. In what
follows we shall consider the tachyon potentials field to obtain viable models
of dark energy.
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Fig. 8.2. Evolution of the phantom field is shown for the model described by (8.64).
Due to the unusual behavior, the phantom field, released with zero kinetic energy
away from the origin, moves towards the top of the potential. It sets into the damped
oscillations about φ = 0 and ultimately settles there permanently
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The tachyon dynamics (on a non-BPS) D3 brane can be described by an
effective field theory with the following action

S =
∫

d4x

{√
−g

(
R

2κ2

)

− V (φ)
√
− det(gab + ∂aφ∂bφ)

}
. (8.65)

The tachyon field measures the varying brane tension and is such that V (φ =
∞) = 0 and V (φ = 0) = 1. The effective potential obtained in open string
theory has the form

V (φ) =
T3

cosh
(
φ
φ0

) , (8.66)

where φ0 =
√

2 for superstring and φ0 = 2 in case of bosonic string. We should
note that the potential for the rolling scalar contains no free parameter to tune
which is normally required for a viable cosmological evolution. For instance,
the late time evolution of the scalar field with potential (8.66) can mimic
the current accelerated expansion of universe provided the brane tension T3

could be tuned to the critical energy density at the current epoch. However,
this is absolutely out of scope from viewpoint of string theory as it leads to
very small masses for massive string states. We are, therefore, led to think
of another mechanism which would affect the D-brane tension and the slope
of the scalar field potential without touching the string length and the string
coupling constant. We shall hereafter show that these features are shared by
the warped compactification. Consider the following warped metric

ds2
10 = β(yi)gabdxadxb + β−1(yi)ĝijdyidyj , (8.67)

where the coordinates yi represent the compact dimensions, and ĝij represent
metric in the compact space. At some point in the y-space the factor β can
be small. This corresponds to a scenario in which the brane moves in the
compact dimensions reducing its tension. The tachyon action at a point y in
the y-space becomes

S = −
∫

d4xβ2V (φ)
√
− det(gab + β−1∂aφ∂bφ) . (8.68)

Normalizing the scalar field as φ →
√
βφ, one finds the standard Dirac-

Born-Infeld (DBI) type action

S = −
∫

d4xV (φ)
√
− det(gab + ∂aφ∂bφ) , (8.69)

where now the potential is

V (φ) =
V0

cosh
(√

βφ
φ0

) , with V0 = β2T3 . (8.70)
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The constant V0 can be less than T3 for small values of β with β < 1. In
sections to follow, we shall also consider other forms of tachyon potential
which can be inspired by string theory and others which are introduced by
purely phenomenological considerations.

In a spatially flat Friedmann-Robertson-Walker (FRW) background, The
energy density ρ and the pressure p which follow from action (8.65) are
given by,

ρ =
V (φ)√
1− φ̇2

, (8.71)

p = −V (φ)
√

1− φ̇2 . (8.72)

The equation of motion of the rolling scalar field follows from (8.8)

φ̈

1− φ̇2
+ 3Hφ̇ +

Vφ
V (φ)

= 0 , (8.73)

which is equivalent to the conservation equation

ρ̇

ρ
+ 3H(1 + w) = 0 . (8.74)

The tachyon dynamics is very different from the standard field case. Irrespec-
tive of steepness of tachyon potential, its equation of state parameter varies
between 0 and −1. Thus reheating is impossible to achieve in this model, if
tachyon field is to be an inflaton. However, it can be used as a candidate of
dark energy as shown in one of the following sections.

We now look for the potential which can lead to power law type of ex-
pansion in case of tachyon field. In this case, the expression for (1 + w) is
also given by the (8.50) but the equation of state parameter w has a simple
relation with φ̇

φ̇2 = 1 + w . (8.75)

Using (8.50) and (8.75) we get

φ(t) =
∫ [
− 2Ḣ

3qH2

]
dt . (8.76)

From (8.48), (8.50) and (8.72) we can express the potential V (t) as

V (t) = (−w)1/2ρ = H2/qA1/q

(
1 +

2
3q

Ḣ

H2

)
. (8.77)

In case of Born-Infeld scalar field, (8.76) and (8.77) determine the field φ(t)
and the potential V (t) for given scale factor a(t). In case of power law expan-
sion a(t) ∝ tn, we obtain from (8.76) and (8.77)
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φ(t) − φ0 =
(

2
3nq

)1/2

t , (8.78)

V (t) = n2/qA1/q

(
1− 2

3nq

)1/2

t−2/q , (8.79)

which finally lead to
V (φ) = V0φ

−2/q . (8.80)

We should note that the power law expansion in the present case takes place
with the constant velocity of the the field (see (8.78)) which is typical of Born-
Infeld dynamics. For q = 1 corresponding to standard GR, (8.80) reduces to
inverse square potential earlier obtained by Padmanabhan [18]. In case of RS
which corresponds to q = 2, we get V (φ) ∼ 1/φ. In case of high energy GB
regime (= 2/3), the potential which can implement power law expansion turns
out to be

V (φ) =
V0

φ3
. (8.81)

This sort of hierarchy of potentials is understandable; in GR the required
potential behaves as 1/φ2 whereas in RS scenario due to the extra brane
damping, the power law expansion can be achieved with the less inverse power
of field. In the high energy GB regime, the Hubble damping is weaker than
the standard FRW cosmology, thereby requiring larger inverse power of the
field.

8.1.3 Current Acceleration and Observations in Brief

The direct evidence of current acceleration of universe is related to the ob-
servation of luminosity distance of high redshift supernovae by two groups
independently in 1998 [1, 2]. The luminosity distance at high redshift is larger
in dark energy dominated universe. Thus supernovae would appear fainter in
case the universe is dominated by dark energy. The luminosity distance can
be used to estimate the apparent magnitude m of the source given its absolute
magnitude M . using the following relation often used in astronomy

m−M = 5 log
(

DL

Mpc

)
+ 25 . (8.82)

In order to get a feeling of the phenomenon (the reader is referred to excellent
review of Perivolaropoulos [19] for details) let us consider two supernovae
1997ap at redshift z = 0.83 with m = 24.32 and 1992P at z = 0.026 with
apparent magnitude M = 16.08. Since the supernovae are supposed to be the
standard candles, their absolute magnitude is same. Secondly we shall use the
fact that DL(z) � z/H0 for small value of z. Equation (8.82) then yields the
following estimate

H0DL � 1.16 (8.83)
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The theoretical estimate for the luminosity distance for flat universe tells us

DL � 0.95H−1
0 , Ω(0)

m = 1 , (8.84)

DL � 1.23H−1
0 , Ω(0)

m = 0.3, Ω
(0)
Λ = 0.7 . (8.85)

The above estimate clearly lands a strong support to the case of dark energy
dominated universe (see [19] for details).

An interesting proposal for visualizing acceleration in supernovae data was
proposed in [20]. The authors displayed the data with error bars on the phase
plane (ȧ, a), see Fig. 8.3 for flat models with different values of Ωm. The
data at low red shift clearly confirms the presence of accelerated phase but
due to large error bars it is not possible to choose a particular model. The
later requires the interplay between the low redshift and the high redshift
data [20]. The observations related to CMB and large scale structures inde-
pendently support the dark energy scenario. The CMB anisotropies observed
originally by COBE in 1992 and the recent WMAP data overwhelmingly sup-
port inflationary scenario. The location of the major peak around l = 220 tells
us that Ωtot � 1. Since the baryonic matter in the universe amounts to only
4%. Nearly 30% of the total energy content is contributed by non-luminous

Fig. 8.3. The supernovae data points are displayed in the phase plane (ȧ, a). The
solid curves correspond to flat cosmological models for different values of Ωm. The
bottom and top curves corresponds to Ωm = 0.0, 1.0 respectively from [20]
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component of non-barionic nature with dust like equation of state dubbed
cold dark matter. There is then a deficit of about 70%–the missing compo-
nent, known as dark energy. The CMB and the large scale galaxy clustering
data is complimentary to supernova results; the combined analysis strongly
points towards Ωm = 0.3 and ΩΛ = 0.7 universe.

However, in view of the fine tuning problem, it looks absolutely essential
that dark energy be represented by a variable equation of state. At the same
time, the quest for dark energy metamorphosis continues at the observational
level.

8.2 Cosmological Constant Λ

Historically Λ was introduced by Einstein to achieve a static solution which
turned out to be unstable. However, after the Hubble’s redshift discovery in
1929, the motivation for having Λ was lost and it was dropped. Since then
the cosmological constant was introduced time and again to remove the dis-
crepancies between theory and observations and withdrawn when these dis-
crepancies were resolved. It had come and gone several times making its come
back finally, seemingly for ever!, in 1998 through supernova Ia observations.
Recently much efforts have gone in understanding Λ in the frame work of
quantum fields and string theory. In what follows we shall briefly mention
these issues.

Λ as a Natural Free Parameter of Classical Gravity

It should be noted that a term proportional to the the metric gμν is missing
on the right hand side of Einstein equation (8.2). Indeed the Bianch identity
ΔνGμ

ν = 0 implies that

Gμν = +κTμν − Λgμν , (8.86)

with
∇νT μν = 0 , (8.87)

where Tμν is a symmetric tensor, and κ and Λ are constants. The demand
that it should in the first approximation reduce to the Newtonian equation
for gravitation will require Tμν to represent the energy momentum tensor
for matter and κ = 8πG/c2 with Λ being negligible at the stellar scale. The
Einstein equations should then read as

Gμν ≡ Rμν −
1
2
gμνR = 8πGTμν − Λgμν . (8.88)

Note that the constant Λ enters into the equation naturally. It was in-
troduced by Einstein in an ad-hoc manner to have a physically acceptable
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static model of the Universe and was subsequently withdrawn when Fried-
mann found the non-static model with acceptable physical properties. We
would however like to maintain that it appears in the equation as naturally
as the stress tensor Tμν and hence should be considered on the same footing
[21]. As for the classical physics, the cosmological constant is a free parameter
of the theory and its numerical value should be determined from observations.

Λ Arising due to Vacuum Fluctuations

Cosmological constant can be associated with vacuum fluctuations in the
quantum field theoretic context. Though the arguments are still at the level
of numerology but may have far reaching consequences. Unlike the classical
theory the cosmological constant Λ in this scheme is no longer a free param-
eter of the theory. Broadly the line of thinking takes the following route. The
quantum effects in GR become important when the Einstein Hilbert action
becomes of the order of Planck’s constant; this happens at the Planck’s length
Lp =

√
(8πG) ∼ 10−32cm corresponding to Planck energy which is of the or-

der of M4
p ∼ 1072GeV 4. In the language of field theory, a system is described

by a set of quantum fields. The ground state energy dubbed zero point energy
or vacuum energy of a free quantum field is infinite.

This contribution is related the ordering ambiguity of fields in the classical
Lagrangian and disappears when normal ordering is adopted. Since this pro-
cedure of throwing out the vacuum energy is ad hoc, one might try to cancel it
by introducing the counter terms. The later, however requires fine tuning and
may be regarded as unsatisfactory. Whether or not the zero point energy in
field theory is realistic is still a debatable question. The divergence is related
to the modes of very small wave length. As we are ignorant of physics around
Planck scale we might be tempted to introduce a cut off at Lp and associate
Λ with this fundamental scale. Thus we arrive at an estimate of vacuum en-
ergy ρv ∼M4

p (corresponding mass scale− MV ∼ (ρ1/4
V ) which is away by 120

orders of magnitudes from the observed value of this quantity. The vacuum en-
ergy may not be felt in the laboratory but plays important role in GR through
its contribution to the energy momentum tensor as < Tμν >0= −ρV gμν and
appears on the right hand side of Einstein equations

Rμν −
1
2
gμνR = 8πG (Tμν+ < Tμν >0) . (8.89)

The problem of zero point energy is naturally resolved by invoking super-
symmetry which has many other remarkable features. In the supersymmetric
description, every bosonic degree of freedom has its Fermi counter part which
contributes zero point energy with opposite sign compared to the bosonic de-
gree of freedom thereby doing away with the vacuum energy. It is in this sense
the supersymmetric theories do not admit a non-zero cosmological constant.
However, we know that we do not leave in supersymmetric vacuum state and
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hence it should be broken. For a viable supersymmetric scenario, for instance
if it is to be relevant to hierarchy problem, the suppersymmetry breaking scale
should be around Msusy ∼ 103GeV . We are still away from the observed value
by many orders of magnitudes. At present we do not know how Planck scale
or SUSY breaking scales is related to the observed vacuum scale.

Λ from String Theory−de-Sitter Vacuua a la KKLT

In view of the observations related to supernova, large scale clustering and
Micro wave background, the idea of late time acceleration has reached the level
of general acceptability. It is, therefore, not surprising that tremendous efforts
have recently been made in finding out de-Sitter solutions in supergravity and
string theory. Using flux compactification, Kachru, Kallosh, Linde and Trivedi
(KKLT) formulated a procedure to construct de-Sitter vacua of type IIB string
theory [22]. They demonstrated that the life time of the vacua is larger that
the age of universe and hence these solutions can be considered as stable for
practical purposes. Although a fine-tuning problem of Λ still remains in this
scenario, it is interesting that string theory gives rise to a stable de-Sitter
vacua with all moduli fixed. We note that a vast number of different choices
of fluxes leads to a complicated landscape with more than 10100 vacua. We
should believe, if we can, that we live in one of them!.

8.2.1 Fine Tuning Problem

Inspite of the fact that introduction of Λ does not require an adhoc assump-
tion and it is also not ruled out by observation as a candidate of dark energy;
the scenario base upon Λ is faced with the worst type of fine tuning problem.
The numerical value of Λ at early epochs should be tuned to a fantastic accu-
racy so as not to disturb todays physics. In order to appreciate the problem,
let us consider the following ratio

ρΛ
3H2(t)
8πG

= ΩΛ

(
H0

H(t)

)2

, (8.90)

where ΩΛ = (ρΛ/ρc) � 0.7. It will not disturb our estimate if we assume
radiation domination today. In that case the ratio H/H0 scales as a−2 and
since the temperature is inversely proportional to the scale factor a, we find

ρΛ
3H2(t)
8πG

= 0.7
(

T0

T

)4

. (8.91)

Since at the Planck (T = Tp = Mp ) epoch T0/T � 10−31, the ratio of ρΛ to
3H2/8πG turns out to be of the order of 10−123. On the theoretical ground,
such a fine tuning related to the scale of cosmological constant is not ac-
ceptable. This problem led to the investigation of scalar field models of dark
energy which can alleviate this problem to a considerable extent.
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8.3 Dynamically Evolving Scalar Field Models
of Dark Energy

Before entering into the detailed investigations of field dynamics, we shall first
examine some of the general constraints on scalar field Lagrangian if it is to
be relevant to cosmology.

8.3.1 Broad Features of Scalar Field Dynamics and Cosmological
Relevance of Scaling Solutions

The scalar field aiming to describe dark energy is often imagined to be a relic
of early universe physics. Depending upon the model, the scalar field energy
density may be larger or smaller than the background (radiation/matter)
energy density ρB. In case it is larger than the back ground density, the density
ρφ should scale faster than ρB allowing radiation domination to commence
which requires a steep scalar field potential. In this case the field energy
density overshoots the background and becomes sub dominant to it. This
leads to the locking regime for the scalar field. The field unlocks the moment
its energy density becomes comparable to the background. Its further course of
evolution crucially depend upon the form of field potential. In order to obtain
viable dark energy models, we require that the energy density of the scalar field
remains unimportant during radiation and matter dominant eras and emerges
only at late times to give rise to the current acceleration of universe. It is then
important to investigate cosmological scenarios in which the energy density
of the scalar field mimics the background energy density. The cosmological
solutions which satisfy this condition is called scaling solutions [23]. Namely
scaling solutions are characterised by the relation

ρB/ρφ = const . (8.92)

We shall shortly demonstrate that exponential potentials give rise to scal-
ing solutions for a minimally coupled scalar field, allowing the field energy
density to mimic the background being sub-dominant during radiation and
matter dominant eras. In this case, for any generic initial conditions, the field
would sooner or later enter into the scaling regime (see Fig. 8.4). This allows
to alleviate the fine tuning problem to a considerable extent. The same thing
is true in case of the undershoot, i.e., when the field energy is smaller as
compared to the background. In Fig. 8.5, we have displayed a cartoon depict-
ing the field dynamics in absence of scaling solutions. For instance, we shall
see later, scaling solutions, which could mimic realistic background, do not
exist in case of phantom and tachyon fields. These models are plagued with
additional fine tuning problem.

Scaling solutions exist in case of a steep exponential potential V (φ) ∼
exp(λφ/Mp) with λ2 > 3(1 + wm) ( the field dominated case corresponds
to λ2 < 3(1 + wm) whereas λ2 < 2 gives rise to ever accelerating universe).
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Fig. 8.4. Desired evolution of background and scalar field energy densities ρB and
ρφ. In case of overshoot (solid line) and undershoot (dotted line), the field energy
density (for different initial conditions) joins the attractor solution which mimics
the background (scaling solution). At late times, the field energy density exits the
scaling regime to become dominant

Nucleosynthesis puts stringent restriction on any additional degree of freedom
which translates into a constraint on the slope of the exponential potential λ.

Late Time Evolution and Exit from Scaling Regime

Obviously, scaling solution is non-accelerating as the equation of state of the
field φ equals to that of the background fluid (wφ = wm) in this case. One
then requires to introduce a late time feature in the potential allowing to exit
from the scaling regime. Broadly there are two ways to get the required late
time behavior for a minimally coupled scalar field:
(i) The potential changes into a power law type V ∼ φ2q which gives late time
acceleration for q < 1/2 (e.g. V (φ) = V0 [cosh(αφ/Mp)− 1]q , q > 0 [24]).
(ii) The potential becomes shallow to support the slow-roll at large values of
the field [25] allowing the field energy density to catch up with the background;
such a solution is referred to a tracker.

The scalar field models in absence of the above described features suffer
from the fine tuning problem similar to the case of cosmological constant.

Scalar fields should not interfere with the thermal history of universe, they
are thus should satisfy certain constraints. An earlier constraint in the history
of universe follows from nucleosynthesis which we briefly describe below [11].

Nucleosynthesis Constraint

The introduction of an extra degree of freedom (on the top of those already
present in the standard model of particle physics) like a scalar field might effect
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Fig. 8.5. Evolution of ρB, ρφ in absence of scaling solution. The scalar field after its
energy density overshoots the background gets into locking regime where it mimics
cosmological constant. It waits till its energy density becomes comparable to the
background; it then begins evolving and takes over the background to account for
the current acceleration

the abundance of light elements in the radiation dominated epoch. The pres-
ence of a minimally coupled scalar field effects the expansion rate at a given
temperature. This effect becomes crucial at the nucleosynthesis epoch with
temperature round 1MeV when the weak interactions (which keep neutrons
and protons in equilibrium) freeze-out. The observationally allowed range of
expansion rate at this temperature leads to a bound on the energy density of
the scalar field

Ωφ(T ∼ 1MeV ) <
7ΔNeff/4

10.75 + 7ΔNeff/4
, (8.93)

where ΔNeff are the additional relativistic degrees of freedom and 10.75 is
the effective number of standard model degrees of freedom. A conservative
bound on the additional degrees of freedom used in the literature is given by
ΔNeff � 1.5. Equation (8.93) then yields a constraint

Ωφ(T ∼ 1MeV ) < 0.2 , (8.94)

which results into a restriction on the slope of the potential (see Sect. V).

8.3.2 Autonomous Systems, Their Fixed Points and Stability

The dynamical systems which play an important role in cosmology belong to
the class of the so called autonomous systems. In what follows we shall analyze
the dynamics in great details of a variety of scalar field models. We first
briefly record some basic definitions related to dynamical systems. Though,
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for simplicity we shall consider the system of two first order equations, the
analysis can be extended to a system of any number of equations. Let us
consider the system of two coupled differential equations for x(t) and y(t)

ẋ = f(x, y, t) ,

ẏ = g(x, y, t) , (8.95)

where f and g are well behaved functions. System (8.95) is said to be au-
tonomous if f and g do not contain explicit time dependent. The dynamics
of these systems can be analysed in a standard way.
• Fixed or critical points
A point (xc, yc) is said to be a fixed point or critical point of the autonomous
system if and only if

(f, g)|xc,yc = 0 (8.96)

and a critical point (xc, yc) is called an attractor in case

(x(t), y(t))→ (xc, yc) for t→∞ . (8.97)

• Stability around the fixed points
The stability of each point can be studied by considering small perturbations
δx and δy around the critical point (xc, yc), i.e.

x = xc + δx , y = yc + δy . (8.98)

Substituting into (8.104) and (8.105), leads to the first-order differential
equations:

d
dN

(
δx
δy

)
=M

(
δx
δy

)
, (8.99)

where matrixM depends upon xc and yc

⎡
⎣M =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

(x=xc,y=yc)

⎤
⎦

The general solution for the evolution of linear perturbations can be
written as

δx = C1exp(μ1N) + C2exp(μ2N) , (8.100)
δy = C3exp(μ1N) + C4expp(μ2N) , (8.101)

where μ1 and μ2 are the eigenvalues of matrixM. Thus the stability around
the fixed points depends upon the nature of eigenvalues. One generally uses
the following classification:

– (i) Stable node: μ1 < 0 and μ2 < 0.
– (ii) Unstable node: μ1 > 0 and μ2 > 0.
– (iii) Saddle point: μ1 < 0 and μ2 > 0 (or μ1 > 0 and μ2 < 0).
– (iv) Stable spiral: The determinant of the matrix M is negative and the

real parts of μ1 and μ2 are negative.
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8.3.3 Quintessence

Let us consider a minimally coupled scalar field φ with a potential V (φ):

L =
1
2
εφ̇2 + V (φ) , (8.102)

where ε = +1 for an ordinary scalar field. Here we allow the possibility of
phantom (ε = −1) as we see in the next subsection.

In what follows we shall consider a cosmological evolution when the uni-
verse is filled by a scalar field φ and a barotropic fluid with an equation of
state wm = pm/ρm. We introduce the following dimensionless quantities:

x ≡ κφ̇√
6H

, y ≡ κ
√
V√

3H
, λ ≡ − Vφ

κV
, Γ =

V Vφφ
V 2
φ

. (8.103)

For the Lagrangian density (8.102) the Einstein equations can be written in
the following autonomous form (see [3] for details):

dx
dN

= −3x +
√

6
2

ελy2

+
3
2
x
[
(1− wm)εx2 + (1 + wm)(1− y2)

]
, (8.104)

dy
dN

= −
√

6
2

λxy

+
3
2
y
[
(1 − wm)εx2 + (1 + wm)(1 − y2)

]
, (8.105)

dλ
dN

= −
√

6λ2(Γ − 1)x , (8.106)

together with a constraint equation

εx2 + y2 +
κ2ρm
3H2

= 1 , (8.107)

where N ≡ log (a). We note that the equation of state w and the fraction of
the energy density Ωφ for the field φ is

wφ ≡
p

ρ
=

εx2 − y2

εx2 + y2
, Ωφ ≡

κ2ρ

3H2
= εx2 + y2 . (8.108)

We also define the total effective equation of state:

weff ≡
p + pm
ρ + ρm

= wm + (1 − wm)εx2 − (1 + wm)y2 . (8.109)

An accelerated expansion occurs for weff < −1/3. In this subsection we shall
consider the normal scalar field (ε = +1).
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Constant λ

From (8.103) we find that the constant λ corresponds to an exponential
potential [23]:

V (φ) = V0e
−κλφ . (8.110)

In this case (8.106) is dropped from the dynamical system. One can obtain
the fixed points by setting dx/dN = 0 and dy/dN = 0 in (8.104) and (8.105).
This is summarized in Table 8.1.

In the next section we shall extend our analysis to the more general case in
which dark energy is coupled to dark matter. The readers may refer to the next
section in order to know precise values of the eigenvalues in a more general
system. From Table 8.1 we find that there exists two stable fixed points (c) and
(d). The point (c) is a stable node for λ2 < 3γ. Since the effective equation of
state is weff = wφ = −1+λ2/3, the accelerated expansion occurs for λ2 < 2 in
this case. The point (d) corresponds to a scaling solution in which the energy
density of the field φ decreases proportionally to that of the barotropic fluid
(γφ = γ). Although this fixed point is stable for λ2 > 3γ, we do not have an
accelerated expansion in the case of non relativistic dark matter.

The above analysis of the critical points shows that one can obtain an
accelerated expansion provided that the solutions approach the fixed point
(c) with λ2 < 2, in which case the final state of the universe is the scalar-field
dominated one (Ωφ = 1). The scaling solution (d) is not viable to explain the
late-time acceleration. However this can be used to provide the cosmological
evolution in which the scalar field decreases proportionally to that of the
matter or radiation. If the slope of the exponential potential becomes shallow

Table 8.1. The properties of the critical points (s=saddle, p=point, un=unstable,
n=node, st=stable, sp=spiral) from [3]. Here γ is defined by γ ≡ 1 + wm

Name x y Range Stability Ωφ γφ

(a) 0 0 ∀λ, γ s. p. for 0 < γ < 2 0 –

(b1) 1 0 ∀λ,γ un. n. for λ <
√

6 1 2

s p for λ >
√

6

(b2) -1 0 ∀λ, γ un. n. for λ > −√
6 1 2

s. p. for λ < −√
6

(c) λ/
√

6 [1 − λ2/6]1/2 λ2 < 6 st. n. for λ2 < 3γ 1 λ2/3
st. n. for 3γ < λ2 < 6

(d) (3/2)1/2 γ/λ [3(2 − γ)γ/2λ2]1/2 λ2 > 3γ st. n. for 3γ < λ2 3γ/λ2 γ
< 24γ2/(9γ − 2)
st. sp. for λ2 >
24γ2/(9γ − 2)
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to satisfy λ2 < 2 near to the present, the universe exits from the scaling regime
and approaches the fixed point (c) giving rise to an accelerated expansion.

Dynamically Changing λ

Exponential potentials correspond to constant λ and Γ = 1. Let us consider
the potential V (φ) along which the field rolls down toward plus infinity (φ→
∞) This means that x > 0 in (8.106). If the condition

Γ > 1 , (8.111)

is satisfied, λ decreases toward 0. Hence the slope of the potential becomes flat
as λ → 0, thereby giving rise to an accelerated expansion at late times. The
condition (8.111) is regarded as the tracking condition under which the energy
density of φ eventually catches up that of the fluid. In order to construct viable
quintessence models, we require that the potential should satisfy the condition
(8.111). For example, one has Γ = (n + 1)/n > 1 for the inverse power-law
potential V (φ) = V0φ

−n with n > 0. This means that the tracking occurs for
this potential.

When Γ < 1 the quantity λ increases toward infinity. Since the potential
is steep in this case, the energy density of the scalar field becomes negligible
compared to that of the fluid. Hence we do not have an accelerated expansion
at late times.

In order to obtain the dynamical evolution of the system we need to solve
(8.106) together with (8.104) and (8.105). Although λ is dynamically changing,
one can exploit the discussion of constant λ by considering “instantaneous”
critical points.

8.3.4 Phantoms

The phantom field corresponds to a negative kinematic sign, i.e ε = −1 in
(8.102). Let us consider the exponential potential given by (8.110). In this
case (8.106) is dropped from the dynamical system. In Table 8.2 we show
fixed points for the phantom field. The only stable solution is the scalar-field
dominant solution (b), in which case the equation of the field φ is

wφ = −1− λ2/3 . (8.112)

Hence wφ is less than −1. The scaling solution (c) is unstable and exists only
for wm < −1. We note that the effective equation of state of the universe
equals to wφ, i.e., weff = −1− λ2/3. In this case the Hubble rate evolves as

H =
2

3(1 + weff)(t− ts)
, (8.113)

where ts is an integration constant. Hence H diverges for t → ts. This is so-
called the Big Rip singularity at which the Hubble rate and the energy density
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Table 8.2. The properties of the critical points (s=saddle, p=point, n=node,
st=stable) for ε = −1 (from [3])

Name x y Range Stab. Ωφ wφ

(a) 0 0 No for 0 ≤ Ωφ ≤ 1 s. p. 0 –

(b) −λ/
√

6 [1 + λ2/6]1/2 All values st. n. 1 −1 − λ2/3

(c)
√

6(1+wm)
2λ

[
−3(1−w2

m)

2λ2 ]1/2 wm < −1 s. p. −3(1+wm)

λ2 wm

of the universe exhibit divergence. We note that the phantom field rolls up
the potential hill in order to lead to the increase of the energy density.

When the potential of the phantom is different from the exponential type,
the quantity λ is dynamically changing in time. In this case the point (b)
in Table 8.2 can be regarded as an instantaneous critical point. Then the
equation of state wφ varies in time, but the field behaves as a phantom since
wφ = −1− λ2/3 < −1 is satisfied.

8.3.5 Tachyons

We shall take into account the contribution of a barotropic perfect fluid with
an equation of state pB = (γ−1)ρB. Then the background equations of motion
are for rolling tachyon system are

Ḣ = − φ̇2V (φ)

2M2
p

√
1− φ̇2

− γ

2
ρB
M2
p

, (8.114)

φ̈

1− φ̇2
+ 3Hφ̇ +

Vφ
V

= 0 , (8.115)

ρ̇B + 3γHρB = 0 , (8.116)

together with a constraint equation:

3M2
pH

2 =
V (φ)√
1− φ̇2

+ ρB . (8.117)

Defining the following dimensionless quantities:

x = φ̇ , y =

√
V (φ)√

3HMp

, (8.118)

we obtain the following autonomous equations

dx
dN

= −(1− x2)(3x−
√

3λy) , (8.119)
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dy
dN

=
y

2

(
−
√

3λxy − 3(γ − x2)y2

√
1− x2

+ 3γ
)

, (8.120)

dλ
dN

= −
√

3λ2xy(Γ − 3/2) . (8.121)

where

λ = −MpVφ
V 3/2

, Γ =
V Vφφ
V 2
φ

. (8.122)

We note that the allowed range of x and y is 0 ≤ x2 + y4 ≤ 1 from the
requirement: 0 ≤ Ωφ ≤ 1. Hence both x and y are finite in the range 0 ≤ x2 ≤
1 and 0 ≤ y ≤ 1. The effective equation of state for the field φ is

γφ =
ρφ + pφ

ρφ
= φ̇2 , (8.123)

which means that γφ ≥ 0. The condition for inflation corresponds to φ̇2 < 2/3.

Constant λ

From (8.121) we find that λ is a constant for Γ = 3/2. This case corresponds
to an inverse square potential (For details, see [3])

V (φ) = M2φ−2 . (8.124)

The scalar-field dominated solution (Ωφ = 1), in this case, corresponds to
γφ = λ2/3 which can lead to an accelerated expansion for λ2 < 2. No scaling
solution which could mimic radiation or matter exist in this case (see [3]). Since
λ is given by λ = 2Mp/M , the condition for an accelerated expansion gives a
super-Planckian value of the mass scale, i.e., M >

√
2Mp. Such a large mass is

problematic since this shows the breakdown of classical gravity. This problem
can be alleviated for the inverse power-law potential V (φ) = M4−nφ−n, as
we will see below.

Dynamically Changing λ

When the potential is different from the inverse square potential given in
(8.124), λ is a dynamically changing quantity. As we have seen in the subsec-
tion of quintessence, there are basically two cases: (i) λ evolves toward zero,
or (ii) |λ| increases toward infinity. The case (i) is regarded as the tracking
solution in which the energy density of the scalar field eventually dominates
over that of the fluid. This situation is realized when the potential satisfies
the condition

Γ > 3/2 , (8.125)
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as can be seen from (8.121). The case (ii) corresponds to the case in which the
energy density of the scalar field becomes negligible compared to the fluid.

As an example let us consider the inverse power-law potential given by

V (φ) = M4−nφ−n, n > 0 . (8.126)

In this case one has Γ = (n + 1)/n. Hence the scalar-field energy density
dominates at late times for n < 2.

There exist a number of potentials that exhibit the behavior |λ| → ∞
asymptotically. For example V (φ) = M4−nφ−n with n > 2 and V (φ) =
V0e

−μφ with μ > 0. In the latter case one has Γ = 1. In these cases, pressure
less dust ia late time attractor where as the accelerated expansion can occur
as a transient phenomenon. Extra fine tuning is needed in this case to obtain
the current acceleration.

8.4 Scaling Solutions in Models of Coupled Quintessence

As we have already seen in the previous section, exponential potentials give
rise to scaling solutions for a minimally coupled scalar field, allowing the field
energy density to mimic the background being sub-dominant during radiation
and matter dominant eras. In the previous section we found out the expression
for Ωφ for scaling solution which after combining with the nucleosynthesis
constraint (8.94) gives

Ωφ ≡
ρφ

ρφ + ρm
=

(1 + wm)
λ2

< 0.2 → λ > 5 . (8.127)

In this case, however, one can not have an accelerated expansion at late times
since ρφ mimics background. We briefly mentioned as how to exit the scaling
regime, in models of minimally coupled scalar fields, to account for the current
acceleration of universe.

If the scalar field φ is coupled to the background fluid, it is possible to
obtain an accelerated expansion at late-times even in the case of steep expo-
nential potentials. In this section we implement the coupling Q between the
field and the barotropic fluid and show that scaling solutions can also account
for accelerated expansion.

The evolution equations in presence of coupling acquire the form

ρ̇φ + 3H(1 + wφ)ρφ = −Qρmφ̇ (8.128)

ρ̇m + 3H(1 + wm)ρm = Qρmφ̇ , (8.129)

Ḣ = −1
2

[
(1 + wm)ρφ + (1 + wm)ρm

]
. (8.130)
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Table 8.3. Q �= 0, from [3]

x y Ωφ weff

−
√

6Q
3(1−wm)

0 2Q2

3(1−wm)
1

1 0 1 1

−1 0 1 1

λ√
6

[(1 − λ2

6
)]1/2 1 −1 + λ2

3

√
6(1+wm)
2(λ+Q)

[
2Q(λ+Q)+3 (1−w2

m)

2(λ+Q)2
]1/2 Q(λ+Q)+3 (1+wm)

(λ+Q)2
λwm−Q
(λ+Q)

H2 =
ρφ + ρm

3
, (8.131)

where coupling Q is field dependent in general. For simplicity, we shall as-
sume constant coupling. The autonomous form of equations for exponential
potential in presence of coupling takes the following form

dx

dN
= −3x +

√
6

2
λy2 +

3
2
x
[
(1− wm)εx2 (8.132)

+(1 + wm)(1− c1y
2)
]
−
√

6Q
2

(1− x2 − y2) ,

dy

dN
= −
√

6
2

λxy +
3
2
y
[
(1 − wm)x2 + (1 + wm)(1 − y2)

]
. (8.133)

We display the critical points for coupled quintessence in the table 8.3 in
which the last entry corresponds to scaling solution with effective equation
of state weff = 0 for Q = 0 consistent with earlier analysis. It is remark-
able that weff → −1 for Q >> λ. Thus scaling solutions can account for
acceleration in presence of coupling between field and the barotropic fluid.
Unfortunately, they are not acceptable from CMB constraints. The general
investigations of perturbations for coupled quintessence require further serious
considerations.

8.5 Quintessential Inflation

In this section we shall work out the example of quintessential inflation which
is an attempt to describe inflation and dark energy with a single scalar field.
The description to follow would clearly demonstrate the utility of the tools
developed in earlier sections. The problem was first addressed by Peebles and
Vilenkin [26]. They introduced a potential for the field φ which allowed it
to play the role of the inflaton in the early Universe and later to play the
role of the quintessence field. To do this it was important that the potential
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did not have a minimum in which the inflaton field would completely de-
cay at the end of the initial period of inflation. They proposed the following
potential

V (φ) =

{
λ(φ4 + M4) for φ < 0 ,

λM4

1+(φ/M)α for φ ≥ 0 .
(8.134)

For φ < 0 we have ordinary chaotic inflation. Much later on, for φ > 0
the universe once again begins to inflate but this time at the lower energy
scale associated with quintessence. Reheating after inflation should have pro-
ceeded via gravitational particle production because of the absence of the
potential minimum, but this mechanism is very inefficient and leads to an
unwanted relic gravity wave background. The main difficulty for the realistic
construction of quintessential inflation is that we need a flat potential dur-
ing inflation but also require a steep potential during radiation and matter
dominated periods. There are some nice resolutions of quintessential inflation
in braneworld scenarios as we shall see below (see review. [27] and references
therein on this theme). In these models, the scalar field exhibits the proper-
ties of tracker field. As a result it goes into hiding after the commencement
of radiation domination; it emerges from the shadow only at late times to
account for the observed accelerated expansion of universe. These models be-
long to the category of non oscillating models in which the standard reheating
mechanism does not work. In this case, one can employ an alternative mecha-
nism of reheating via quantum-mechanical particle production in time varying
gravitational field at the end of inflation. However, then the inflaton energy
density should red-shift faster than that of the produced particles so that ra-
diation domination could commence. And this requires a steep field potential,
which of course, cannot support inflation in the standard FRW cosmology.
This is precisely where the brane [29] assisted inflation comes to our rescue.
In the 4+1 dimensional brane scenario inspired by the Randall-Sundrum (RS)
model, the standard Friedman equation is modified to

H2 =
1

3M2
p

ρ

(
1 +

ρ

2λb

)
, (8.135)

The presence of the quadratic density term ρ2/λb (high energy corrections)
in the Friedmann equation on the brane changes the expansion dynamics at
early epochs (see [29] for details on the dynamics of brane worlds) Conse-
quently, the field experiences greater damping and rolls down its potential
slower than it would during the conventional inflation. This effect is reflected
in the slow-roll parameters which have the form [29]

ε = εFRW
1 + V/λb

(1 + V/2λb)
2 ,

η = ηFRW (1 + V/2λb)
−1 , (8.136)
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where

εFRW =
M2
p

2

(
V ′

V

)2

, ηFRW = M2
p

(
V ′′

V

)
(8.137)

are slow roll parameters in the absence of brane corrections. The influence of
the brane term becomes important when V/λb � 1 and in this case we get

ε � 4εFRW(V/λb)−1, η � 2ηFRW(V/λb)−1 . (8.138)

Clearly slow-roll (ε, η � 1) is easier to achieve when V/λb � 1 and on this ba-
sis one can expect inflation to occur even for relatively steep potentials, such
the exponential and the inverse power-law. The model of quintessential infla-
tion [27] based upon reheating via gravitational particle production is faced
with difficulties associated with excessive production of gravity waves. Indeed
the reheating mechanism based upon this process is extremely inefficient. The
energy density of so produced radiation sis typically one part in 1016 to the
scalar-field energy density at the end of inflation. As a result, these models
have prolonged kinetic regime during which the amplitude of primordial grav-
ity waves enhances and violates the nucleosynthesis constraint. Hence, it is
necessary to look for alternative mechanisms more efficient than the gravita-
tional particle production to address the problem. However this problem may
be alleviated in instant preheating scenario [28] in the presence of an interac-
tion g2φ2χ2 between inflaton φ and another field χ. This mechanism is quite
efficient and robust, and is well suited to non-oscillating models. It describes
a new method of realizing quintessential inflation on the brane in which in-
flation is followed by ‘instant preheating’. The larger reheating temperature
in this model results in a smaller amplitude of relic gravity waves which is
consistent with the nucleosynthesis bounds [27]. Figure 8.6 shows the post
inflationary evolution of scalar field energy density for the potential given by

V (φ) = V0 [cosh(κλφ) − 1]n . (8.139)

This potential has following asymptotic forms:

V (φ) �
{

Ṽ0e
−nκλφ (|λφ| � 1, φ < 0) ,

Ṽ0(κλφ)2n (|λφ| � 1) ,
(8.140)

where Ṽ0 = V0/2n. The existence of scaling solution for exponential potential
(V ∼ exp(κλφ)) tells us that λ2 > 3γ where as nucleosynthesis constraint
makes the potential further steeper as Ωφ = 3γ/λ2 < 0.2 → λ > 5. Potential
(8.140) is suitable for unification of inflation and quintessence. In this case,
for a given number of e-foldings, the COBE normalization allows to estimate
the brane tension λb and the field potential at the end of inflation. Tuning the
model parameters (λ − slope of the potential and V0), we can account for the
current acceleration with Ω

(0)
φ � 0.7 and Ω

(0)
m � 0.3 [27]. However, the recent
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Fig. 8.6. The post-inflationary evolution of the scalar field energy density (solid
line), radiation (dashed line) and cold dark matter (dotted line) is shown as a func-
tion of the scale factor for the quintessential inflation model described by (8.140)

with V
1/4
0 
 10−30Mp, λ = 50 and n = 0.1. After brane effects have ended, the

field energy density ρφ enters the kinetic regime and soon drops below the radiation
density. After a brief interval during which < wφ >
 −1, the scalar field begins to
track first radiation and then matter. At very late times (present epoch) the scalar
field plays the role of quintessence and makes the universe accelerate. The evolution
of the energy density is shown from the end of inflation until the present epoch.
From [32]

measurement of CMB anisotropies by WMAP places fairly strong constraints
on inflationary models. The ratio of tensor perturbations to scalar pertur-
bations turns out to be large in case of steep exponential potential pushing
the model outside the 2σ observational bound [30]. However, the model can
be rescued in case a Gauss-Bonnet term is present in five dimensional bulk
[31, 32].

In order to see how it comes about, let us consider Einstein-Gauss-Bonnet
action for five dimensional bulk containing a 4D brane

S = 1
2κ2

5

∫
d5x
√−g

{
R− 2Λ5 + αGB[R2 − 4RABRAB

+RABCDRABCD]
}

+
∫
d4x
√
−h(Lm − λb) , (8.141)

R refers to the Ricci scalars in the bulk metric gAB and hAB is the induced
metric on the brane; αGB has dimensions of (length)2 and is the Gauss-Bonnet
coupling, while λb is the brane tension and Λ5 (< 0) is the bulk cosmological
constant. The constant κ5 contains the M5, the 5D fundamental energy scale
(κ2

5 = M−3
5 ).
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The analysis of modified Friedmann [34] equation which follows from the
above action shows that there is a characteristic GB energy scale MGB [34]
such that,

ρ�M4
GB ⇒ H2 ≈

[
κ2

5

16αGB
ρ

]2/3

, (8.142)

M4
GB � ρ� λb ⇒ H2 ≈ κ2

6λb
ρ2 , (8.143)

ρ� λb ⇒ H2 ≈ κ2

3
ρ . (8.144)
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Fig. 8.7. Plot of R (R ≡ 16A2
T /A2

S − according to the normalization used here [31])
versus the spectral index nS in case of the exponential potential for the number of
inflationary e-foldings N = 50, 60, 70 (from top to bottom) along with the 1σ and 2σ
observational contours. These curves exhibit a minimum in the intermediate region
between GB (extreme right) and the RS (extreme left) regimes. The upper limit on
nS is dictated by the quantum gravity limit where as the lower bound is fixed by
the requirement of ending inflation in the RS regime [31]. For a larger value of the
number of e-folds N , more points are seen to be within the 2σ bound. Clearly, steep
inflation in the deep GB regime is not favored due to the large value of R in spite
the spectral index being very close to 1 there. From [32]
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It should be noted that Hubble law acquires an unusual form for energies
higher than the GB scale. Interestingly, for an exponential potential, the mod-
ified (8.142) leads to exactly scale invariant spectrum for primordial density
perturbations. Inflation continues below GB scale and terminates in the RS
regime leading to the spectral index very close to one. However, as shown in
[31, 43], the tensor to scalar ratio of perturbations(R) also increases towards
the high energy GB regime. It is known that the value of R is larger in case
of RS brane world as compared to the standard GR. While moving from the
RS regime characterized by H2 ∝ ρ2 to GB regime described by H2 ∝ ρ2/3,
we pass through an intermediate region which mimics GR like behavior. It is
not surprising that the ratio R has minimum at an intermediate energy scale
between RS and GB, see Fig. 8.7. We conclude that a successful scenario of
quintessential inflation on the Gauss-Bonnet braneworld can be constructed
which agrees with CMB+LSS observations.

8.6 Conclusions

In this talk we have reviewed the general features of scalar field dynamics.
Our discussion has been mainly pedagogical in nature. we tried to present the
basic features of standard scalar field, phantoms and rolling tachyon. Intro-
ducing the basic definitions and concepts, we have shown as how to find the
critical pints and investigate stability around them. This is a standard tech-
nique needed for building the scalar field models desired for a viable cosmic
evolution. The two often used mechanisms for the exit from scaling regime
are also described in detail. In case of phantoms and rolling tachyon, we have
shown that there exits no scaling solutions which would mimic the realistic
background fluid (radiation/matter). Thus, in these case, there will be depen-
dency on the initial conditions of the field leading to fine tuning problems.
These models should therefore be judged on the basis of generic features which
might arise in them. The rolling tachyon is inspired by string theory whereas
as phantoms might be supported by observations!.

After developing the basic techniques of scalar field dynamics, we worked
out the example of quintessential inflation. we have shown in detail how
to implement the techniques for building a unified model of inflation and
quintessence with a single scalar field.

In this talk we have not touched upon the observational status of dark
energy models. We have also not discussed the alternatives to dark energy.
The interested reader is refereed to other talks on these topics in the same
proceedings. The supernovae observations are not yet sufficient to decide the
metamorphosis of dark energy. There have been claims and anti-claims for
dynamically evolving dark energy using supernovae, CMB and large scale
studies. Given the present observational status of cosmology, it would be fair to
say that the nature of dark energy remains to be a mystery of the millennium.
It could be any thing or it could be nothing!
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C. Armendáriz-Picón, V. Mukhanov and P.J. Steinhardt, Phys. Rev. D 63,
103510 (2001) [astro-ph/0006373]; M. Malquarti and A.R. Liddle, Phys. Rev.
D 66, 023524 (2002) [astro-ph/0203232]. 220



256 M. Sami

16. A. Sen, JHEP 0204, 048 (2002); JHEP 0207, 065 (2002); A. Sen, JHEP 9910,
008 (1999); M.R. Garousi, Nucl. Phys. B 584, 284 (2000); Nucl. Phys. B 647,
117 (2002); JHEP 0305, 058 (2003); E.A. Bergshoeff, M. de Roo, T.C. de Wit,
E. Eyras, S. Panda, JHEP 0005, 009 (2000); J. Kluson, Phys. Rev. D 62,
126003 (2000); D. Kutasov and V. Niarchos, Nucl. Phys. B 666, 56 (2003). 220, 231

17. T. Padmanabhan, astro-ph/0602117. 221
18. T. Padmanabhan, Phys. Rev. D 66 (2002) 021301. 234
19. L. Perivolaropoulos, astro-ph/0601014. 234, 235
20. T. Padmanabhan and T. Roy Choudhury, Mon. Not. Roy. Astron. Soc. 344,

823 (2003). 235
21. N. Dadhich, gr-qc/0405115. 237
22. Shamit Kachru, Renata Kallosh andrei Linde, Sandip P. Trivedi, Phys. Rev. D

68 046005 (2003). 238
23. E.J. Copeland, A.R. Liddle and D. Wands, ”Phys. Rev. D 57, 4686 (1998). 239, 244
24. V. Sahni and L.M. Wang, Phys. Rev. D 62, 103517 (2000). 240
25. T. Barreiro, E.J. Copeland and N.J. Nunes, Phys. Rev. D 61, 127301 (2000). 240
26. P.J.E. Peebles and A. Vilenkin, Phys. Rev. D 59, 063505 (1999). 249
27. M. Sami and N. Dadhich, hep-th/04050. 250, 251
28. G.N. Felder, L. Kofman and A.D. Linde, Phys. Rev. D 60, 103505 (1999);

G.N. Felder, L. Kofman and A.D. Linde, Phys. Rev. D 59, 123523 (1999). 251
29. R. Maartens, Living Rev. Rel. 7, 7 (2004). 250
30. A.R. Liddle and A.J. Smith, Phys. Rev. D 68, 061301 (2003); S. Tsujikawa and

A.R. Liddle, JCAP 0403, 001 (2004). 252
31. S. Tsujikawa, M. Sami and R. Maartens, Phys. Rev. D 70, 063525 (2004). 252, 253, 254
32. M. Sami and V. Sahni, Phys. Rev. D 70, 083513 (2004). 252, 253
33. J.-F. Dufaux, J. Lidsey, R. Maartens, M. Sami, Phys. Rev. D 70, 083525 (2004)

hep-th/0404161. (Not cited.)
34. S.L. Dubovsky and V.A. Rubakov, Phys. Rev. D 67, 104014 (2003) [arXiv:hep-

th/0212222]. 253



9

Accelerating Universe: Observational Status
and Theoretical Implications

Leandros Perivolaropoulos

Department of Physics, University of Ioannina, Greece
leandros@cc.uoi.gr

Abstract. This is a pedagogical review of the recent observational data obtained
from type Ia supernova surveys that support the accelerating expansion of the uni-
verse. The methods for the analysis of the data are reviewed and the theoretical
implications obtained from their analysis are discussed.

9.1 Introduction

Recent distance-redshift surveys [1, 2, 3, 4, 5, 6] of cosmologically distant
Type Ia supernovae (SnIa) have indicated that the universe has recently (at
redshift z � 0.5) entered a phase of accelerating expansion. This expansion
has been attributed to a dark energy [7] component with negative pressure
which can induce repulsive gravity and thus cause accelerated expansion. The
evidence for dark energy has been indirectly verified by Cosmic Microwave
Background (CMB) [8] and large scale structure [9] observations.

The simplest and most obvious candidate for this dark energy is the cos-
mological constant [10] with equation of state w = p/ρ = −1. The extremely
fine tuned value of the cosmological constant required to induce the observed
accelerated expansion has led to a variety of alternative models where the dark
energy component varies with time. Many of these models make use of a ho-
mogeneous, time dependent minimally coupled scalar field φ (quintessence
[11, 12]) whose dynamics is determined by a specially designed potential
V (φ) inducing the appropriate time dependence of the field equation of state
w(z) = p(φ)/ρ(φ). Given the observed w(z), the quintessence potential can
in principle be determined. Other physically motivated models predicting late
accelerated expansion include modified gravity [13, 14, 15, 16], Chaplygin gas
[17], Cardassian cosmology [18], theories with compactified extra dimensions
[19, 20], braneworld models [21] etc. Such cosmological models predict spe-
cific forms of the Hubble parameter H(z) as a function of redshift z. The
observational determination of the recent expansion history H(z) is therefore
important for the identification of the viable cosmological models.

L. Perivolaropoulos: Accelerating Universe, Lect. Notes Phys. 720, 257–290 (2007)

DOI 10.1007/978-3-540-71013-4 9 c© Springer-Verlag Berlin Heidelberg 2007



258 L. Perivolaropoulos

The most direct and reliable method to observationally determine the
recent expansion history of the universe H(z) is to measure the redshift z and
the apparent luminosity of cosmological distant indicators (standard candles)
whose absolute luminosity is known. The luminosity distance vs. redshift is
thus obtained which in turn leads to the Hubble expansion history H(z).

The goal of this review is to present the methods used to construct the re-
cent expansion history H(z) from SnIa data and discuss the most recent obser-
vational results and their theoretical implications. In the next section I review
the method used to determine H(z) from cosmological distance indicators and
discuss SnIa as the most suitable cosmological standard candles. In Sect. 9.3 I
show the most recent observational results for H(z) and discuss their possible
interpretations other than accelerating expansion. In Sect. 9.4 I discuss some
of the main theoretical implications of the observed H(z) with emphasis on the
various parametrizations of dark energy (the simplest being the cosmological
constant). The best fit parametrizations are shown and their common features
are pointed out. The physical origin of models predicting the best fit form of
H(z) is discussed in Sect. 9.5 where I distinguish between minimally coupled
scalar fields (quintessence) and modified gravity theories. An equation of state
of dark energy with w < −1 is obtained by a specific type of dark energy called
phantom energy [22]. This type of dark energy is faced with theoretical chal-
lenges related to the stability of the theories that predict it. Since however the
SnIa data are consistent with phantom energy it is interesting to investigate
the implications of such an energy. These implications are reviewed in Sect. 9.6
with emphasis to the Big Rip future singularity implied by such models as the
potential death of the universe. Finally, in Sect. 9.7 I review the future obser-
vational and theoretical prospects related to the investigation of the physical
origin of dark energy and summarize the main conclusions of this review.

9.2 Expansion History
from the Luminosity Distances of SnIa

Consider a luminous cosmological object emitting at total power L (absolute
luminosity) in radiation within a particular wavelength band. Consider also an
observer (see Fig. 9.1) at a distance dL from the luminous object. In a static
cosmological setup, the power radiated by the luminous object is distributed
in the spherical surface with radius dL and therefore the intensity l (apparent
luminosity) detected by the observer is

l =
L

4πd2
L

. (9.1)

The quantity

dL ≡
√

L

4πl
(9.2)
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dL

Dist. Ind. Obs

4πdL

L
l = 2

Fig. 9.1. The luminosity distance obtained from the apparent and absolute
luminosities

is known as the luminosity distance to the luminous object and in a static uni-
verse it coincides with the actual distance. In an expanding universe however,
the energy of the radiation detected by the observer has been reduced not
only because of the distribution of photons on the spherical surface but also
because the energy of the photons has been redshifted while their detection
rate is reduced compared to their emission rate due to the cosmological ex-
pansion [23]. Both of these expansion effects give a reduction of the detected
energy by a factor a(t0)

a(t) = (1+ z) where a(t) is the scale factor of the universe
at cosmic time t and t0 is the present time. Usually a is normalized so that
a(t0) = 1. Thus the detected apparent luminosity in an expanding background
may be written as

l =
L

4πa(t0)2x(z)2(1 + z)2
, (9.3)

where x(z) is the comoving distance to the luminus object emitting with
redshift z. This implies that in an expanding universe the luminosity distance
dL(z) is related to the comoving distance x(z) by the relation

dL(z) = x(z)(1 + z) . (9.4)

Using (9.4) and the fact that light geodesics in a flat expanding background
obey

c dt = a(z) dx(z) (9.5)

it is straightforward to eliminate x(z) and express the expansion rate of the
universe H(z) ≡ ȧ

a (z) at a redshift z (scale factor a = 1
1+z ) in terms of the

observable luminosity distance as

H(z) = c[
d

dz
(
dL(z)
1 + z

)]−1 . (9.6)
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This is an important relation that connects the theoretically predictable Hub-
ble expansion history H(z) with the observable luminosity distance dL(z) in
the context of a spatially flat universe. Therefore, if the absolute luminosity of
cosmologically distant objects is known and their apparent luminosity is mea-
sured as a function of redshift, (9.2) can be used to calculate their luminosity
distance dL(z) as a function of redshift. The expansion history H(z) can then
be deduced by differentiation with respect to the redshift using (9.6). Re-
versely, if a theoretically predicted H(z) is given, the corresponding predicted
dL(z) is obtained from (9.6) by integrating H(z) as

dL(z) = c (1 + z)
∫ z

0

dz′

H(z′)
. (9.7)

This predicted dL(z) can be compared with the observed dL(z) to test the con-
sistency of the theoretical model with observations. In practice astronomers
do not refer to the ratio of absolute over apparent luminosity. Instead they
use the difference between apparent magnitude m and absolute magnitude M
which is connected to the above ratio by the relation

m−M = 2.5 log10(
L

l
) . (9.8)

A particularly useful diagram which illustrates the expansion history of the
Universe is the Hubble diagram. The x-axis of a Hubble diagram (see Fig. 9.2)
shows the redshift z of cosmological luminous objects while the y-axis shows
the physical distance Δr to these objects.

In the context of a cosmological setup the redshift z is connected to the
scale factor a(t) at the time of emission of radiation by 1 + z = a(t0)/a(t)
where t0 is the present time. On the other hand, the distance to the luminous
object is related to the time in the past tpast when the radiation emission
was made. Therefore, the Hubble diagram contains information about the
time dependence of the scale factor a(t). The slope of this diagram at a given
redshift denotes the inverse of the expansion rate ȧ

a (z) ≡ H(z) ie

Δr =
1

H(z)
c z . (9.9)

In an accelerating universe the expansion rate H(z) was smaller in the past
(high redshift) and therefore the slope H−1 of the Hubble diagram is larger at
high redshift. Thus, at given redshift, luminous objects appear to be further
away (dimmer) compared to an empty universe expanding with a constant
rate (see Fig. 9.2).

The luminous objects used in the construction of the Hubble diagram are
objects whose absolute luminosity is known and therefore their distance can
be evaluated from their apparent luminosity along the lines discussed above.
Such objects are known as distance indicators or standard candles. A list of
common distance indicators used in astrophysics and cosmology is shown in
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Fig. 9.2. The Hubble diagram. In an accelerating universe luminous objects at a
given redshift appear to be dimmer

Table 9.1 along with the range of distances where these objects are visible and
the corresponding accuracy in the determination of their absolute magnitude.
As shown in Table 9.1 the best choice distance indicators for cosmology are
SnIa not only because they are extremely luminous (at their peak they are as
luminous as a bright galaxy) but also because their absolute magnitude can
be determined at a high accuracy.

Type Ia supernovae emerge in binary star systems where one of the com-
panion stars has a mass below the Chandrasekhar limit 1.4M� and therefore
ends up (after hydrogen and helium burning) as white dwarf supported by de-
generacy pressure. Once the other companion reaches its red giant phase the
white dwarf begins gravitational striping of the outer envelop of the red giant
thus accreting matter from the companion star. Once the white dwarf reaches
a mass equal to the Chandrasekhar limit, the degeneracy pressure is unable

Table 9.1. Extragalactic distance indicators (from [24])

Technique Range of distance Accuracy (1σ)

Cepheids < LMC to 25 Mpc 0.15 mag
SNIa 4 Mpc to > 2 Gpc 0.2 mag
Expand. Phot. Meth./SnII LMC to 200 Mpc 0.4 mag
Planetary Nebulae LMC to 20 Mpc 0.1 mag
Surf. Brightness Fluct 1 Mpc to 100 Mpc 0.1 mag
Tully Fisher 1 Mpc to 100 Mpc 0.3 mag
Brightest Cluster Gal. 50 Mpc to 1 Gpc 0.3 mag
Glob. Cluster Lum. Fun. 1 Mpc to 100 Mpc 0.4 mag
Sunyaev-Zeldovich 100 Mpc to > 1 Gpc 0.4 mag
Gravitational Lensing 5 Gpc 0.4 mag
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to support the gravitational pressure, the white dwarf shrinks and increases
its temperature igniting carbon fussion. This leads to violent explosion which
is detected by a light curve which rapidly increases luminosity in a time scale
of less than a month, reaches a maximum and disappears in a timescale of
1-2 months (see Fig. 9.3). Type Ia are the preferred distance indicators for
cosmology for several reasons:

1. They are exceedingly luminous. At their peak luminosity they reach an
absolute magnitude of M � −19 which corresponds to about 1010M�.

2. They have a relatively small dispersion of peak absolute magnitude.
3. Their explosion mechanism is fairly uniform and well understood.
4. There is no cosmic evolution of their explosion mechanism according to

known physics.
5. There are several local SnIa to be used for testing SnIa physics and for

calibrating the absolute magnitude of distant SnIa.

On the other hand, the main problem for using SnIa as standard candles
is that they are not easy to detect and it is impossible to predict a SnIa
explosion. In fact the expected number of SnIa exploding per galaxy is 1-2
per millenium. It is therefore important to develop a search strategy in order
to efficiently search for SnIa at an early stage of their light curve. The method
used (with minor variations) to discover and follow up photometrically and
spectroscopically SnIa consists of the following steps [1, 2, 3, 4]:

1. Observe a number of wide fields of apparently empty sky out of the plane
of our Galaxy. Tens of thousands of galaxies are observed in a few patches
of sky.

2. Come back three weeks later (next new moon) to observe the same galaxies
over again.

Snla Light Curves
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Fig. 9.3. Typical SnIa light-curve
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3. Subtract images to identify on average 12–14 SnIa.
4. Schedule in advance follow up photometry and spectroscopy on these SnIa

as they brighten to peak and fade away.

Given the relatively short time difference (three weeks) between first and sec-
ond observation, most SnIa do not have time to reach peak brightness so al-
most all the discoveries are pre-maximum. This strategy turns a rare, random
event into something that can be studied in a systematic way. This strategy
is illustrated in Figs. 9.4 and 9.5 (from [25]). The outcome of this observation
strategy is a set of SnIa light curves in various bands of the spectrum (see
Fig. 9.6). These light curves are very similar to each other and their peak
apparent luminosity could be used to construct the Hubble diagram assuming
a common absolute luminosity.

Before this is done however a few corrections must be made to take into
account the minor intrinsic absolute luminosity differences (due to composi-
tion differences) among SnIa as well as the radiation extinction due to the
intergalactic medium. Using samples of closeby SnIa it has been empirically
observed that the minor differences of SnIa absolute luminosity are connected
with differences in the shape of their light curves. Broad slowly declining
light curves (stretch factor s > 1) correspond to brighter SnIa while narrower
rapidly declining light curves (stretch factor s < 1) correspond to intrinsically
fainter SnIa.

This stretch factor dependence of the SnIa absolute luminosity has been
verified using closeby SnIa [27] It was shown that contraction of broad light

~750
Galaxies
per
Field

Scheduled Follow-Up
Photometry

Scheduled Follow-Up
Spectroscopy

λ

RESULT : ~12 to 24 SNe la Discovered
Before Maximum, at New Moon => Follow-up

flux

flux

time

50–100 R Fiel
ds

Fig. 9.4. Search strategy to discover of supernovae in a scheduled, systematic
procedure [25]
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Supernova 1998ba
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Fig. 9.5. Supernova 1997cj, an example of a supernova discovery using the search
strategy described in the text involving subtraction of images

Lightcurves

SN 2001el

K

J

R

U

B

H

I

V

m
ag

ni
tu

de

6

7

8

9

10

11

12

13

14

15

16

17

18
2170 2190 2210 2230 2250

Julian Date [2450000 + ---]

Fig. 9.6. A set of light curves from SN2001el in various bands of the spectrum

curves while reducing peak luminosity and stretching narrow light curves while
increasing peak luminosity makes these light curves coincide (see Fig. 9.7).

In addition to the stretch factor correction an additional correction must
be made in order to compare the light curves of high redshift SnIa with those



9 Accelerating Universe 265

closeby SnIa
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Fig. 9.7. Left: The range of lightcurve for low-redshift supernovae discovered by
the Calan/Tololo Supernova Survey. At these redshifts, the relative distances can
be determined (from redshift), so their relative brightnesses are known. Right: The
same lightcurves after calibrating the supernova brightness using the stretch of the
timescale of the lightcurve as an indicator of brightness (and the color at peak as
an indicator of dust absorption)

of lower redshift. In particular all light curves must be transformed to the same
reference frame and in particular the rest frame of the SnIa. For example a low
redshift light curve of the blue B band of the spectrum should be compared
with the appropriate red R band light curve of a high redshift SnIa. The
transformation also includes correction for the cosmic time dilation (events at
redshift z last 1 + z times longer than events at z � 0).

These corrections consist the K-correction and is used in addition to the
stretch factor correction discussed above. The K-correction transformation is
illustrated in Fig. 9.8.

9.3 Observational Results

The first project in which SnIa were used to determine the cosmological
constant energy was the research from Perlmutter et al. in 1997 [27]. The
project was known as the Supernova Cosmology Project (SCP). Applying
the above described methods they discovered seven distant SnIa at redshift
0.35 < z < 0.65. When discovered, the supernovae were followed for a year
by different telescopes on earth to obtain good photometry data in differ-
ent bands, in order to measure good magnitudes. The Hubble diagram they
constructed was consistent with standard Friedman cosmology without dark
energy or cosmological constant.

A year after their first publication, Perlmutter et al. published in Nature
[1] an update on their initial results. They had included the measurements of a
very high-redshifted z = 0.83 Supernova Ia. This dramatically changed their
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Fig. 9.8. Slightly different parts of the supernova spectrum are observed through
the B filter transmission function at low redshift (upper panel) and through the R
filter transmission function at high redshift (lower panel). This small difference is
accounted for by the “cross-filter K-correction”[26]

conlusions. The standard decelerating Friedman cosmology was rulled out
at about 99% confidence level. The newly discovered Supernova indicated a
universe with accelerating expansion dominated by dark energy. These results
were confirmed independently by another pioneer group (High-z Supernova
Search Team (HSST)) searching for SnIa and measuring the expansion history
H(z) (Riess et al. in 1998 [2]). They had discovered 16 SnIa at 0.16 < z < 0.62
and their H(z) also indicated accelerating expansion ruling out for a flat
universe. Their data also permitted them to definitely rule out decelerating
Friedman cosmology at about 99% confidence level.

In 2003 Tonry et al. [3] reported the results of their observations of eight
newly discovered SnIa. These SnIa were found in the region 0.3 < z < 1.2.
Together with previously acquired SnIa data they had a data set of more
than 100 SnIa. This dataset confirmed the previous findings of accelerated
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expansion and gave the first hints of decelerated expansion at redshifts z
>∼ 0.6

when matter is expected to begin dominating over dark energy. This transi-
tion from decelerating to accelerating expansion was confirmed and pinpointed
accurately by Riess et al. in 2004 [5] who included in the analysis 16 new high-
redshift SnIa obtained with HST and reanalyzed all the available data in a
uniform and robust manner constructing a robust and reliable dataset consist-
ing of 157 points known as the Gold dataset. These SnIa included 6 of the 7
highest redshift SnIa known with z > 1.25. With these new observations, they
could clearly identify the transition from a decelerating towards an accelerat-
ing universe to be at z = 0.46±0.13. It was also possible to rule out the effect
of dust on the dimming of distant SnIa, since the accelerating/decelerating
transition makes the effect of dimming inverse. The Hubble diagram obtained
from the Gold dataset is shown in Fig. 9.9 where the corrected apparent mag-
nitude m(z) of the 157 SnIa is plotted versus the redshift z. The apparent
magnitude m(z) is related to the corresponding luminosity distance dL of the
SnIa by

m(z) = M + 5log10[
dL(z)
Mpc

] + 25 , (9.10)

m(z) = M + 5log[dL(z)/ Mpc] + 25

44
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where M is the absolute magnitude which is assumed to be constant for
standard candles like SnIa after the corrections discussed in Sect. 9.2 are
implemented.

A potential problem of plots like the one of Fig. 9.9 is that it is not easy to
tell immediately if the data favor an accelerating or decelerating universe. This
would be easy to tell in the Hubble diagram of Fig. 9.2 where the distance
is plotted vs redshift and is superposed with the distance-redshift relation
demptyL (z) of an empty universe with H(z) constant. An even more efficient
plot for such a purpose would be the plot of the ratio dL(z)/demptyL (z) (or
its log10) which can immediately distinguish accelerating from decelerating
expansion by comparing with the dL(z)/demptyL (z) = 1 line. Such a plot is
shown in Fig. 9.10 [5] using both the raw Gold sample data and the same
data binned in redshift bins.

The lines of zero acceleration, constant acceleration and constant decel-
eration are also shown for comparison. Clearly the best fit is obtained by an
expansion which is accelerating at recent times (z <∼ 0.5) and decelerating at
earlier times (z >∼ 0.5) when matter is expected to dominate.

The interpretation of the data assuming that the observed dimming at high
redshift is due to larger distance may not be the only possible interpretation.
The most natural alternative interpretations however have been shown to lead
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to inconsistencies and none of them has been favored as a viable alternative
at present. These alternative interpretations include the following:

– Intergalactic Dust: Ordinary astrophysical dust does not obscure equally
at all wavelengths, but scatters blue light preferentially, leading to the well-
known phenomenon of “reddening”. Spectral measurements [5] reveal a
negligible amount of reddening, implying that any hypothetical dust must
be a novel “grey” variety inducing no spectral distortions [28].

– Grey Dust: Grey dust is highly constrained by observations: first, it pre-
dicts further increase of dimming at higher redshifts z

>∼ 0.5 which is not
observed; and second, intergalactic dust would absorb ultraviolet/optical
radiation and re-emit it at far infrared wavelengths, leading to stringent
constraints from observations of the cosmological far-infrared background.
Thus, while the possibility of obscuration has not been entirely eliminated,
it requires a novel kind of dust which is already highly constrained (and
may be convincingly ruled out by further observations).

– Evolution of SnIa: The supernova search teams have found consistency
in the spectral and photometric properties of SnIa over a variety of red-
shifts and environments [5] (e.g. in elliptical vs. spiral galaxies). Thus
despite the relevant tests there is currently no evidence that the observed
dimming can be attributed to evolution of SnIa.

According to the best of our current understanding, the supernova results
indicating an accelerating universe seem likely to be trustworthy. Needless to
say, however, the possibility of a neglected systematic effect can not be defini-
tively excluded. Future experiments, discussed in Sect. 9.7 will both help us
improve our understanding of the physics of supernovae and allow a determi-
nation of the distance/redshift relation to sufficient precision to distinguish
between the effects of an accelerating universe and those of possible astro-
physical phenomena.

9.4 Dark Energy and Negative Pressure

Our current knowledge of the expansion history of the universe can be summa-
rized as follows: The universe originated at an initial state that was very close
to a density singularity known as the Big Bang. Soon after that it entered
a phase of superluminal accelerating expansion known as inflation. During
inflation causally connected regions of the universe exited out of the horizon,
the universe approached spatial flatness and the primordial fluctuations that
gave rise to structure were generated. At the end of inflation the universe
was initially dominated by radiation and later by matter whose attractive
gravitational properties induced a decelerating expansion.

The SnIa data discussed in Sect. 9.3 (along with other less direct cos-
mological observations [8, 9]) strongly suggest that the universe has recently
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entered a phase of accelerating expansion at a redshift z � 0.5. This accelerat-
ing expansion can not be supported by the attractive gravitational properties
of regular matter. The obvious question to address is therefore ‘What are
the properties of the additional component required to support this acceler-
ation?’. To address this question we must consider the dynamical equation
that determines the evolution of the scale factor a(t). This equation is the
Friedman equation which is obtained by combining General Relativity with
the cosmological principle of homogeneity and isotropy of the universe. It may
be written as

ä

a
= −4πG

3

∑
i

(ρi + 3pi) = −4πG
3

[ρm + (ρX + 3pX)] , (9.11)

where ρi and pi are the densities and pressures of the contents of the universe
assumed to behave as ideal fluids. The only directly detected fluids in the uni-
verse are matter (ρm, pm = 0) and the subdominant radiation (ρr, pr = ρr/3).
Both of these fluids are unable to cancel the minus sign on the rhs of the
Friedman equation and can therefore only lead to decelerating expansion. Ac-
celerating expansion in the context of general relativity can only be obtained
by assuming the existence of an additional component (ρX , pX = wρX) termed
‘dark energy’ which could potentially change the minus sign of (9.11) and thus
lead to accelerating expansion. Assuming a positive energy density for dark
energy (required to achieve flatness) it becomes clear that negative pressure
is required for accelerating expansion. In fact, writing the Friedman (9.11) in
terms of the dark energy equation of state parameter w as

ä

a
= −4πG

3
[ρm + ρX(1 + 3w)] (9.12)

it becomes clear that a w < − 1
3 is required for accelerating expansion implying

repulsive gravitational properties for dark energy.
The redshift dependence of the dark energy can be easily connected to

the equation of state parameter w by combining the energy conservation
d(ρXa3) = −pxd(a3) with the equation of state pX = wρX as

ρX ∼ a−3(1+w) = (1 + z)3(1+w) . (9.13)

This redshift dependence is related to the observable expansion history H(z)
through the Friedman equation

H(z)2 =
ȧ2

a2
=

8πG
3

[ρ0m(
a0

a
)3 + ρX(a)] = H2

0 [Ω0m(1 + z)3 + ΩX(z)] (9.14)

where the density parameter Ω ≡ ρ/ρ0crit for matter is constrained by large
scale structure observations to a value (prior) Ω0m � 0.3. Using this prior, the
dark energy density parameter ΩX(z) ≡ ρX(z)/ρ0crit and the corresponding
equation of state parameter w may be constrained from the observed H(z).
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In addition to ΩX(z), the luminosity distance-redshift relation dL(z)
obtained from SnIa observations can constrain other cosmological parame-
ters. The only parameter however obtained directly from dL(z) (using (9.6))
is the Hubble parameter H(z). Other cosmological parameters can be obtained
from H(z) as follows:

– The age of the universe t0 is obtained as:

t0 =
∫ ∞

0

dz

(1 + z)H(z)
. (9.15)

– The present Hubble parameter H0 = H(z = 0).
– The deceleration parameter q(z) ≡ äa/ȧ2

q(z) = (1 + z)
dlnH

dz
− 1 (9.16)

and its present value q0 ≡ q(z = 0).
– The density parameters for matter and dark energy are related to H(z)

through the Friedman (9.14).
– The equation of state parameter w(z) obtained as [29, 30]

w(z) =
pX(z)
ρX(z)

=
2
3 (1 + z)d lnH

dz − 1
1− (H0

H )2Ω0m(1 + z)3
(9.17)

obtained using the Friedman (9.12) and (9.14).

The most interesting parameter from the theoretical point of view (apart
from H(z) itself) is the dark energy equation of state parameter w(z). This
parameter probes directly the gravitational properties of dark energy which
are predicted by theoretical models. The downside of it is that it requires two
differentiations of the observable dL(z) to be obtained and is therefore very
sensitive to observational errors.

The simplest form of dark energy corresponds to a time independent energy
density obtained when w = −1 (see (9.13)). This is the well known cosmolog-
ical constant which was first introduced by Einstein in 1917 two years after
the publication of the General Relativity (GR) equation

Gμν = κTμν , (9.18)

where κ = 8πG/c2. At the time the ’standard’ cosmological model was a
static universe because the observed stars of the Milky Way were found to
have negligible velocities. The goal of Einstein was to apply GR in cosmol-
ogy and obtain a static universe using matter only. It became clear that the
attractive gravitational properties of matter made it impossible to obtain a
static cosmology from (9.18). A repulsive component was required and at the
time of major revolutions in the forms of physical laws it seemed more natural
to obtain it by modifying the gravitational law than by adding new forms of
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energy density. The simplest generalization of (9.18) involves the introduction
of a term proportional to the metric gμν . The GR equation becomes

Gμν − Λgμν = κTμν , (9.19)

where Λ is the cosmological constant. The repulsive nature of the cosmological
constant becomes clear by the metric of a point mass (Schwarschild-de Sitter
metric) which, in the Newtonian limit leads to a gravitational potential

V (r) = −GM

r
− Λr2

6
, (9.20)

which in addition to the usual attractive gravitational term has a repulsive
term proportional to the cosmological constant Λ. This repulsive gravitational
force can lead to a static (but unstable) universe in a cosmological setup
and in the presence of a matter fluid. A few years after the introduction
of the cosmological constant by Einstein came Hubble’s discovery that the
universe is expanding and it became clear that the cosmological constant was
an unnecessary complication of GR. It was then that Einstein (according to
Gamow’s autobiography) called the introduction of the cosmological constant
‘the biggest blunder of my life’. In a letter to Lemaitre in 1947 Einstein wrote:
‘Since I introduced this term I had always had a bad conscience. I am unable
to believe that such an ugly thing is actually realized in nature’. As discussed
below, there is better reason than ever before to believe that the cosmological
constant may be non-zero, and Einstein may not have blundered after all.

If the cosmological constant is moved to the right hand side of (9.19) it may
be incorporated in the energy momentum tensor as an ideal fluid with ρΛ =
Λ/8πG and w = −1. In the context of field theory such an energy momentum
tensor is obtained by a scalar field φ with potential V (φ) at its vacuum state
φ0 i.e. ∂μφ = 0 and Tμν = −V (φ0)gμν . Even though the cosmological constant
may be physically motivated in the context of field theory and consistent with
cosmological observation there are two important problems associated with it:

– Why is it so incredibly small? Observationally, the cosmological constant
density is 120 orders of magnitude smaller than the energy density associ-
ated with the Planck scale – the obvious cut off. Furthermore, the standard
model of cosmology posits that very early on the universe experienced a
period of inflation: A brief period of very rapid acceleration, during which
the Hubble constant was about 52 orders of magnitude larger than the
value observed today. How could the cosmological constant have been so
large then, and so small now? This is sometimes called the cosmological
constant problem.

– The ‘coincidence problem’: Why is the energy density of matter nearly
equal to the dark energy density today?

Despite the above problems and given that the cosmological constant is the
simplest dark energy model, it is important to investigate the degree to which
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it is consistent with the SnIa data. I will now describe the main steps involved
in this analysis. According to the Friedman equation the predicted Hubble
expansion in a flat universe and in the presence of matter and a cosmological
constant is

H(z)2 =
ȧ2

a2
=

8πG
3

ρ0m(
a0

a
)3 +

Λ

3
= H2

0 [Ω0m(1 + z)3 + ΩΛ] , (9.21)

where ΩΛ = ρΛ/ρ0crit and

Ω0m + ΩΛ = 1 . (9.22)

This is the LCDM (Λ+Cold Dark Matter) which is currently the minimal
standard model of cosmology. The predicted H(z) has a single free parameter
which we wish to constrain by fitting to the SnIa luminosity distance-redshift
data.

Observations measure the apparent luminosity vs redshift l(z) or equiv-
alently the apparent magnitude vs redshift m(z) which are related to the
luminosity distance by

2.5log10(
L

l(z)
) = m(z)−M − 25 = 5log10(

dL(z)obs
Mpc

) . (9.23)

From the theory point of view the predicted observable is the Hubble param-
eter (9.21) which is related to the theoretically predicted luminosity distance
dL(z) by (9.7). In this case dL(z) depends on the single parameter Ω0m and
takes the form

dL(z;Ω0m)th = c (1 + z)
∫ z

0

dz′

H(z′;Ω0m)
. (9.24)

Constraints on the parameter Ω0m are obtained by the maximum likelihood
method [31] which involves the minimization of the χ2(Ω0m) defined as

χ2(Ω0m) =
N∑
i=1

[dL(z)obs − dL(z;Ω0m)th]2

σ2
i

, (9.25)

where N is the number of the observed SnIa luminosity distances and σi are
the corresponding 1σ errors which include errors due to flux uncertainties,
internal dispersion of SnIa absolute magnitude and peculiar velocity disper-
sion. If flatness is not imposed as a prior through (9.22) then dL(z)th depends
on two parameters (Ω0m and ΩΛ) and the relation between dL(z;Ω0m, ΩΛ)th
and H(z;Ω0m, ΩΛ) takes the form

dL(z)th =
c(1 + z)√

Ω0m + ΩΛ − 1
sin[

√
Ω0m + ΩΛ − 1

∫ z

0

dz′
1

H(z)
] . (9.26)

In this case the minimization of (9.25) leads to constraints on both Ω0m and
ΩΛ. This is the only direct and precise observational probe that can place
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constraints directly on ΩΛ. Most other observational probes based on large
scale structure observations place constraints on Ω0m which are indirectly
related to ΩΛ in the context of a flatness prior.

As discussed in Sect. 9.2 the acceleration of the universe has been con-
firmed using the above maximum likelihood method since 1998 [1, 2]. Even
the early datasets of 1998 [1, 2] were able to rule out the flat matter domi-
nated universe (SCDM: Ω0m = 1, ΩΛ = 0) at 99% confidence level. The latest
datasets are the Gold dataset (N = 157 in the redshift range 0 < z < 1.75)
discussed in Sect. 9.2 and the first year SNLS (Supernova Legacy Survey)
dataset which consists of 71 datapoints in the range 0 < z < 1 plus 44 pre-
viously published closeby SnIa. The 68% and 95% χ2 contours in the (Ω0m

and ΩΛ) parameter space obtained using the maximum likelihood method
are shown in Fig. 9.11 for the SNLS dataset, a truncated version of the Gold
dataset (TG) with 0 < z < 1 and the Full Gold (FG) dataset. The following
comments can be made on these plots:

– The two versions of the Gold dataset favor a closed universe instead of a
flat universe (ΩTG

tot = 2.16 ± 0.59, ΩFG
tot = 1.44 ± 0.44). This trend is not

realized by the SNLS dataset which gives ΩSNLS
tot = 1.07± 0.52.

– The point corresponding to SCDM (Ω0m, ΩΛ) = (1, 0) is ruled out by all
datasets at a confidence level more than 10σ.

– If we use a prior constraint of flatness Ω0m + ΩΛ = 1 thus restricting on
the corresponding dotted line of Fig. 9.1 and using the parametrization

H(z)2 = H2
0 [Ω0m(1 + z)2 + (1−Ω0m)] (9.27)

we find minimizing χ2(Ω0m) of (9.25)

ΩSNLS
0m = 0.26± 0.04 , (9.28)
ΩTG

0m = 0.30± 0.05 , (9.29)
ΩFG

0m = 0.31± 0.04 . (9.30)

These values of Ω0m are consistent with corresponding constraints from
the CMB [8] and large scale structure observations [9].
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Even though LCDM is the simplest dark energy model and is currently con-
sistent with all cosmological observations (especially with the SNLS dataset)
the question that may still be address is the following: ‘Is it possible to get
better fits (lowering χ2 further) with different H(z) parametrizations and if
yes what are the common features of there better fits?’ The strategy towards
addressing this question involves the following steps:

– Consider a physical model and extract the predicted recent expansion his-
tory H(z; a1, a2, ..., an) as a function of the model parameters a1, a2, ..., an.
Alternatively a model independent parametrization for H(z; a1, a2, ..., an)
(or equivalently w(z; a1, a2, ..., an)) may be constructed aiming at the best
possible fit to the data with a small number of parameters (usually 3 or
less).

– Use (9.7) to obtain the theoretically predicted luminosity distance as a
function of z, dL(z; a1, a2, ..., an)th.

– Use the observed luminosity distances dL(zi)obs to construct χ2 along the
lines of (9.25) and minimize it with respect to the parameters a1, a2, ..., an.

– From the resulting best fit parameter values ā1, ā2, ..., ān (and their er-
ror bars) construct the best fit H(z; ā1, ā2, ..., ān), dL(z; ā1, ā2, ..., ān) and
w(z; ā1, ..., ān). The quality of fit is measured by the depth of the minimum
of χ2

min(ā1, ..., ān).

Most useful parametrizations reduce to LCDM of (9.21) for specific parameter
values giving a χ2

LCDM for these parameter values. Let

Δχ2
LCDM ≡ χ2

min(ā1, ā2, ..., ān)− χ2
LCDM . (9.31)

The value of Δχ2
LCDM is usually negative since χ2 is usually further reduced

due to the larger number of parameters compared to LCDM. For a given
number of parameters the value of Δχ2

LCDM gives a measure of the probability
of having LCDM physically realized in the context of a given parametrization
[33]. The smaller this probability is, the more ’superior’ this parametrization
is compared to LCDM. For example for a two parameter parametrization and
|Δχ2

LCDM | > 2.3 the parameters of LCDM are more than 1σ away from the
best fit parameter values of the given parametrization. This statistical test
has been quantified in [33] and applied to several H(z) parametrizations.

As an example let us consider the two parameter polynomial parametriza-
tion allowing for dark energy evolution

H(z)2 = H2
0 [Ω0m(1+z)3 +a2(1+z)2 +a1(1+z)+(1−a2−a1−Ω0m)] (9.32)

in the context of the Full Gold dataset. Applying the above described χ2

minimization leads to the best fit parameter values a1 = 1.67 ± 1.03 and
a2 = −4.16 ± 2.53. The corresponding |Δχ2

LCDM | is found to be 2.9 which
implies that the LCDM parameters values (a1 = a2 = 0) are in the range of
1σ − 2σ away from the best fit values.
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The same analysis can be repeated for various different parametrizations in
an effort to identify the common features of the best fit parametrizations. For
example two other dynamical dark energy parametrizations used commonly
in the literature are defined in terms of w(z) as

– Parametrization A:

w(z) = w0 + w1 z , (9.33)
H2(z) = H2

0 [Ω0m(1 + z)3 + (9.34)
+ (1 −Ω0m)(1 + z)3(1+w0−w1)e3w1z] .

– Parametrization B:

w(z) = w0 + w1
z

1 + z
, (9.35)

H2(z) = H2
0 [Ω0m(1 + z)3 +

+(1−Ω0m)(1 + z)3(1+w0+w1)e3w1[1/(1+z)−1]] . (9.36)

where the corresponding forms of H(z) are derived using (9.17). The best fit
forms of w(z) obtained from a variety of these and other parametrizations [33]
in the context of the Full Gold dataset are shown in Fig. 9.12.

Even though these best fit forms appear very different at redshifts z > 0.5
(mainly due to the two derivatives involved in obtaining w(z) from dL(z)), in
the range 0 < z < 0.5 they appear to have an interesting common feature:
they all cross the line w = −1 also known as the Phantom Divide Line (PDL).
As discussed in the next section this feature is difficult to reproduce in most
theoretical models based on minimally coupled scalar fields and therefore if
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Fig. 9.12. The best fit forms of w(z) obtained from a variety of parametrizations
[33] in the context of the Full Gold dataset. Notice that they all cross the line w = −1
also known as the Phantom Divide Line (PDL)
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it persisted in other independent datasets it could be a very useful tool in
discriminating among theoretical models. Unfortunately if the same analysis
is made in the context of the more recent SNLS dataset it seems that this
common feature does not persist. In Fig. 9.13 the best fit w(z) (along with
the 1σ error region) is shown in the context of three different datasets (in
analogy with Fig. 9.11) for the there different parametrizations (A, B and
polynomial of (9.32) (called C in Fig. 9.13)). Even though the crossing of the
PDL is realized at best fit for both the FG and TG datasets it is not realized
at best fit when the SNLS is used. Thus we must wait until further SnIa
datasets are released before the issue is settled. In Fig. 9.14 I show the 1σ
and 2σ χ2 contours corresponding to parametrizations A and B with a prior
of Ω0m = 0.24 confirming the fact that the SNLS dataset provides best fit
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Fig. 9.14. The 1σ and 2σ χ2 contours corresponding to parametrizations A and B
with a prior of Ω0m = 0.24. Notice that the SNLS dataset provides best fit parameter
values that are almost identical to those corresponding to LCDM (w0 = −1, w1 = 0)

parameter values that are almost identical to those corresponding to LCDM
(w0 = −1, w1 = 0) despite the dynamical degrees of freedom incorporated in
the parametrizations A and B. It should be pointed out however that despite
the differences in the best fit parametrizations, the three datasets (SNLS, TG
and FG) are consistent with each other at the 95% confidence range (see e.g.
Fig. 9.14) and they are all consistent with flat LCDM with Ω0m � 0.3.

9.5 Dynamical Evolution of Dark Energy

Even though LCDM is the simplest model consistent with current cosmo-
logical data it is plagued with theoretical fine tuning problems discussed in
the previous section (the ‘coincidence’ and the ‘cosmological constant’ prob-
lems). In additions dynamical dark energy parametrizations of H(z) provide
in certain cases significantly better fits to the SnIa data. Therefore the inves-
tigation of physically motivated models that predict a dynamical evolution
of dark energy is an interesting and challenging problem (see also M. Sami’s
contribution in this volume of models of dark energy).

The role of dark energy can be played by any physical field with posi-
tive energy and negative pressure which violates the strong energy condition
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ρ + 3p > 0 (w > − 1
3 ). Quintessence scalar fields [34] with small positive ki-

netic term (−1 < w < − 1
3 ) violate the strong energy condition but not the

dominant energy condition ρ + p > 0. Their energy density scales down with
the cosmic expansion and so does the cosmic acceleration rate. Phantom fields
[35] with negative kinetic term (w < −1) violate the strong energy condition,
the dominant energy condition and maybe physically unstable. However, they
are also consistent with current cosmological data and according to recent
studies [30, 33, 36] they maybe favored over their quintessence counterparts.

Homogeneous quintessence or phantom scalar fields are described by La-
grangians of the form

L = ±1
2
φ̇2 − V (φ) , (9.37)

where the upper (lower) sign corresponds to a quintessence (phantom) field in
(9.37) and in what follows. The corresponding equation of state parameter is

w =
p

ρ
=
± 1

2 φ̇
2 − V (φ)

± 1
2 φ̇

2 + V (φ)
. (9.38)

For quintessence (phantom) models with V (φ) > 0 (V (φ) < 0) the parameter
w remains in the range −1 < w < 1. For an arbitrary sign of V (φ) the
above restriction does not apply but it is still impossible for w to cross the
PDL w = −1 in a continuous manner. The reason is that for w = −1 a zero
kinetic term ±φ̇2 is required and the continuous transition from w < −1 to
w > −1 (or vice versa) would require a change of sign of the kinetic term. The
sign of this term however is fixed in both quintessence and phantom models.
This difficulty in crossing the PDL w = −1 could play an important role in
identifying the correct model for dark energy in view of the fact that data
favor w � −1 and furthermore parametrizations of w(z) where the PDL is
crossed appear to be favored over the cosmological constant w = −1 according
to the Gold dataset as discussed in the previous section.

It is therefore interesting to consider the available quintessence and phan-
tom scalar field models and compare the consistency with data of the predicted
forms of w(z) among themselves and with arbitrary parametrizations of w(z)
that cross the PDL. This task has been recently undertaken by several authors
in the context of testing the predictions of phantom and quintessence scalar
field models [36, 37].

As an example we may consider a particular class of scalar field potentials
of the form

V (φ) = s φ , (9.39)

where I have followed [38] and set φ = 0 at V = 0. As discussed in Sect. 9.2
(see also [38]) the field may be assumed to be frozen (φ̇ = 0) at early times due
to the large cosmic friction H(t). It has been argued [39] that such a potential
is favored by anthropic principle considerations because galaxy formation is
possible only in regions where V (φ) is in a narrow range around V = 0
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and in such a range any potential is well approximated by a linear function.
In addition such a potential can provide a potential solution to the cosmic
coincidence problem [40].

The cosmological evolution in the context of such a model [41] is obtained
by solving the coupled Friedman-Robertson-Walker (FRW) and the scalar
field equation

ä

a
= MPl

1
3M2

p

(φ̇2 + s φ)− Ω0mH2
0

2a3
, (9.40)

φ̈ + 3
ȧ

a
φ̇− s = 0 . (9.41)

where Mp = (8πG)−1/2 is the Planck mass and I have assumed a potential of
the form

V (φ) = MPls φ (9.42)

where the upper (lower) sign corresponds to quintessence (phantom) mod-
els. The solution of the system (9.40)–(9.41) for both positive and negative
values of the single parameter of the model s, is a straightforward numerical
problem [41] which leads to the predicted forms of H(z; s) and w(z; s). These
forms may then be fit to the SnIa datasets for the determination of the best
fit value of the parameter s. This task has been undertaken in [41] using the
Full Gold dataset. The best fit value of s was found to be practically indistin-
guishable from zero which corresponds to the cosmological constant for both
the quintessence and the phantom cases. The predicted forms of w(z) for a
phantom and a quintessence case and s � 2 is shown in Fig. 9.15. The value
of Δχ2

LCDM is positive in both cases which implies that the fit is worse com-
pared to LCDM. The main reason for this is that both the quintessence and
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Fig. 9.15. The predicted forms of w(z) for a phantom and a quintessence case and
s 
 2 provide worse fits to the Gold dataset than LCDM and even worse compared
to best fit parametrizations that cross the PDL [41]
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phantom minimally coupled scalar field models do not allow for crossing of the
PDL line for any parameter value as discussed above. In contrast, the best fit
w(z) parametrizations A and B of (9.33)–(9.35) which allow for PDL crossing
have a negative Δχ2

LCDM in the context of the Gold dataset as shown in Fig.
9.15 and therefore provide better fits than the field theory models. It should
be stressed however that in the context of the SNLS dataset, parametrizations
that allow for crossing of the PDL do not seem to have a similar advantage
as discussed in the previous section.

The difficulty in crossing the PDL w = −1 described above could play
an important role in identifying the correct model for dark energy in view of
the fact that data favor w � −1 and furthermore parametrizations of w(z)
where the PDL is crossed appear to be favored over the cosmological constant
w = −1 in the context of the Gold dataset. Even for generalized k-essence
Lagrangians [42, 43] of a minimally coupled scalar field e.g.

L =
1
2
f(φ)φ̇2 − V (φ) (9.43)

it has been shown [44] to be impossible to obtain crossing of the PDL. Multiple
field Lagrangians (combinations of phantom with quintessence fields [45, 46,
47, 48]) have been shown to in principle achieve PDL crossing but such models
are complicated and without clear physical motivation (but see [49] for an
interesting physically motivated model).

The obvious class of theories that could lead to a solution of the above
described problem is the non-minimally coupled scalar fields. Such theories
are realized in a universe where gravity is described by a scalar-tensor theory
and their study is well motivated for two reasons:

1. A scalar-tensor theory of gravity is predicted by all fundamental quantum
theories that involve extra dimensions. Such are all known theories that
attempt to unify gravity with the other interactions (e.g. supergravity
(SUGRA), M-theory etc.).

2. Scalar fields emerging from scalar tensor theories (extended quintessence)
can predict an expansion rate H(z) that violates the inequality

d(H(z)2/H2
0 )

dz
≥ 3Ω0m(1 + z)2 , (9.44)

which is equivalent to crossing the PDL w = −1 (see e.g. [50]).

In fact it has been shown in [50] that in contrast to minimally coupled
quintessence, scalar tensor theories can reproduce the main features of the
best fit Hubble expansion history obtained from the Gold dataset. However,
the precise determination of the scalar tensor theory potentials requires more
accurate SnIa data and additional cosmological observational input.
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9.6 The Fate of a Phantom Dominated Universe: Big Rip

As discussed in Sect. 9.4 the Gold dataset favors a dynamical dark energy with
present value of the equation of state parameter w in the phantom regime.
If this trend is verified by future datasets and if w remains in the phantom
regime in the future then the fate of the universe acquires novel interesting
features. The energy density of phantom fields increases with time and so does
the predicted expansion acceleration rate ä

a . This monotonically increasing
acceleration rate of the expansion may be shown to lead to a novel kind
of singularity which occurs at a finite future time and is characterized by
divergences of the scale factor a, the Hubble parameter H its derivative Ḣ
and the scalar curvature. This singularity has been called ‘Big Smash’ [51]
the first time it was discussed and ‘Big Rip’ [52] in a more recent study.
An immediate consequence of the very rapid expansion rate as the Big Rip
singularity is approached is the dissociation of bound systems due to the
buildup of repulsive negative pressure in the interior of these systems.

This dissociation of bound systems can be studied by considering the
spacetime in the vicinity of a point mass M placed in an expanding back-
ground in order to study the effects of the cosmic expansion on bound sys-
tems. Such a metric should interpolate between a static Schwarzschild metric
at small distances from M and a time dependent Friedmann spacetime at
large distances. In the Newtonian limit (weak field, low velocities) such an
interpolating metric takes the form [53]:

ds2 = (1− 2GM

a(t)ρ
) · dt2 − a(t)2 · (dρ2 + ρ2 · (dθ2 + sin2θdϕ2)) , (9.45)

where ρ is the comoving radial coordinate. Using

r = a(t) · ρ (9.46)

the geodesics corresponding to the line element (9.45) take the form

− (r̈ − ä

a
r) − GM

r2
+ rϕ̇2 = 0 (9.47)

and
r2ϕ̇ = L , (9.48)

where L is the constant angular momentum per unit mass. Therefore the radial
equation of motion for a test particle in the Newtonian limit considered is

r̈ =
ä

a
r +

L2

r3
− GM

r2
. (9.49)

The first term on the rhs proportional to the cosmic acceleration is a time
dependent repulsive term which is increasing with time for w < −1. This is
easy to see by considering the Friedman (9.12) combined with the dark energy



9 Accelerating Universe 283

evolution ρX ∼ a−3(1+w) where the scale factor obtained from the Friedman
equation is

a(t) =
a(tm)

[−w + (1 + w)t/tm]−
2

3(1+w)
for t > tm (9.50)

and tm is the transition time from decelerating to accelerating expansion. For
phantom energy (w < −1) the scale factor diverges at a finite time

t∗ =
w

1 + w
tm > 0 (9.51)

leading to the Big Rip singularity. Clearly, the time dependent repulsive term
of (9.49) diverges at the Big Rip singularity.

A quantitative analysis [54] shows that the geodesic (9.49) is equivalent to a
Newtonian equation with a time-dependent effective potential that determines
the dynamics of the bound system which in dimesionless form is [54]

Veff = −ω2
0

r
+

ω2
0

2r2
− 1

2
λ(t)2r2 , (9.52)

where

λ(t) =

√
2|1 + 3w|

3(−w + (1 + w)t)
, (9.53)
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Fig. 9.16. The numerically obtained evolution of a galactic size two body system
at times close to the predicted dissociation time trip [54]
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Table 9.2. The difference between dissociation times trip and the big rip time t∗
for three bound systems in years as predicted by (9.55). The dissociation times trip

for the three bound systems in units of tm are also shown in column 3. The value
w = −1.2 was assumed [54]

System t∗ − trip (yrs) trip/tm

Solar System 1.88 · 104 6.00
Milky Way 3.59 · 108 5.94

Coma Cluster 1.58 · 1010 3.19

with w < −1 and ω0 is defined as

ω2
0 =

GM

r3
0

t2m . (9.54)

At t = 1 the system is assumed to be in circular orbit with radius given by
the minimum rmin(t) of the effective potential of (9.52). It is easy to show
that the minimum of the effective potential (9.52) disappears at a time trip
which obeys

t∗ − trip =
16
√

3
9

T
√

2|1 + 3w|
6π|1 + w| . (9.55)

The value of the bound system dissociation time trip may be verified by nu-
merically solving the geodesic Newtonian equation of a test particle with the
effective potential (9.52). The resulting evolution close to the predicted dis-
sociation time trip is shown in Fig. 9.16 for w = −1.2 and verifies the disso-
ciation time predicted by (9.55). Using the appropriate values for the bound
system masses M the dissociation times of cosmological bound systems may
be obtained. These are shown in Table 9.2.

9.7 Future Prospects-Conclusion

The question of the physical origin and dynamical evolution properties of dark
energy is the central question currently in cosmology. Since the most sensitive
and direct probes towards the answer of this question are distance-redshift
surveys of SnIa there has been intense activity during the recent years towards
designing and implementing such projects using ground based and satellite
observatories. Large arrays of CCDs such as MOSAIC camera at Cerro Tololo
Inter-American Obsrevatory, the SUPRIME camera at Subaru or the MEGA-
CAM at the Canada-France-Hawaii Telescope (CFHT) are some of the best
ground based tools for supernova searches. These devices work well in the
reddest bands (800–900nm) where the ultraviolet and visible light of redshifted
high-z SnIa is detected. Searches from the ground have the advantages of large
telescope apertures (Subaru for example has 10 times the collecting area of
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the Hubble Space Telescope (HST)) and large CCD arrays (the CFHT has a
378-milion pixel camera compared to the Advanced Camera for Surveys on
HST which has 16 million pixels). On the other hand the advantage of space
satellite observatories like the HST include avoiding the bright and variable
night-sky encountered in the near infrared, the potential for much sharper
imaging for point sources like supernovae to distinguish them from galaxies
in which they reside and better control over the observing conditions which
need not factor in weather and moonlight.

The original two SnIa search teams (the Supernova Cosmology Project
and the High-z Supernova Search Team) have evolved to a number of ongoing
and proposed search projects both satellite and ground based. These projects
(see Fig. 9.17) include the following:

– The GOODS [56], the Higher-z Supernova Search Team(HZT)
[55]. This has originated from the High-z Supernova Search Team and
has A. Riess of Space Telescope Sci. Inst. as its team leader. This team is
in collaboration with the GOODS program (Great Observatories Origin
Deep Survey) using the ACS of the HST to detect and analyze high redshift
(0.5 < z < 2) SnIa. Successive GOODS observations are spaced by 45 days
providing 5 epochs of data on two fields: the Hubble Deep Field (HDF)
north and south. Whereas the GOODS team adds these images to build a
superdeep field, the HZT subtracts the accumulated template image from
each incoming frame. Thus the HZT has already detected more than 42
supernovae in the above redshift range.

ESSENCE
CFHT Legacy Survey

Higher-z SN Search
(GOODS)

SN Factory
Carnegie SN Project

SNAP

Fig. 9.17. Ongoing and proposed SnIa search projects with the corresponding red-
shift ranges
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– Equation of State:(ESSENCE)[57], SupErNovae Trace Cosmic
Expansion. This has also originated from the High-z Supernova Search
Team and has C. Stubbs of the Univ. of Washington, C. Smith and
N. Suntzeff of Cerro Tololo as its team leaders. This ongoing program
aims to find and measure 200 SnIa’s in the redshift range of 0.15 < z < 0.7
where the transition from decelerating to accelerating expansion occurs.
Spectroscopic backup to the program comes from the ground based Gem-
ini, Magellan, VLT, Keck and MMT Obsevatory. The ESSENCE project
is a five-year endeavor, with the goal of tightly constraining the time
average of the equation-of-state parameter w = p/ρ of the dark energy.
To help minimize systematic errors, all of their ground-based photometry
is obtained with the same telescope and instrument. In 2003 the highest-
redshift subset of ESSENCE supernovae was selected for detailed study
with HST.

– The Supenova Legacy Survey (SNLS)[58]: The CFHT Legacy Sur-
vey aims at detecting and monitoring about 1000 supernovae in the red-
shift range 0 < z < 1 with Megaprime at the Canada-France-Hawaii
telescope between 2003 and 2008. High-z spectroscopy of SnIa is being
carried on 8m class telescopes (Gemini, VLT, Keck). Team represen-
tatives are: C. Pritchet (Univ. Victoria), P. Astier (CNRS/IN2P3), S.
Basa (CNRS/INSU) et al. The SNLS has recently released the first year
dataset [6].

– Nearby Supernova Factory (SNF)[59]: The Nearby Supernova Fac-
tory (SNF) is an international collaboration based at Lawrence Berkeley
National Laboratory. Greg Aldering of Berkeley Lab’s Physics Division is
the principal investigator of the SNF. The goal of the SNF is to discover
and carefully study 300 to 600 nearby Type Ia supernovae in the redshift
range 0 < z < 0.3.

– Carnegie SN Project (CSP)[60]: The goal of the project is the
comprehensive study of both Type Ia and II Supernovae in the local
(z < 0.07) universe. This is a long-term program with the goal of obtaining
exceedingly-well calibrated optical/near-infrared light curves and optical
spectroscopy of over 200 Type nnIa and Type nII supernovae. The CSP
takes advantage of the unique resources available at the Las Campanas
Observatory (LCO). The team leader is R. Carlberg (Univ. of Toronto).

– Supernova Acceleration Probe (SNAP)[61]: This is a proposed space
mission originating from LBNL’s Supernova Cosmology Project that would
increase the discovery rate for SnIa’s to about 2000 per year. The satellite
called SNAP (Supernova / Acceleration Probe) would be a space based
telescope with a one square degree field of view with 1 billion pixels. The
project schedule would take approximately four years to construct and
launch SNAP, and another three years of mission observations. SNAP has
a 2 meter telescope with a large field of view: 600 times the sky area of the
Hubble Space Telescopes Wide Field Camera. By repeatedly imaging 15
square degrees of the sky, SNAP will accurately measure the energy spectra
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and brightness over time for over 2,000 Type Ia supernovae, discovering
them just after they explode.

These projects aim at addressing important questions related to the physical
origin and dynamical properties of dark energy. In particular these questions
can be structured as follows:

– Can the accelerating expansion be attributed to a dark energy ideal fluid
with negative pressure or is it necessary to implement extensions of GR
to understand the origin of the accelerating expansion?

– Is w evolving with redshift and crossing the PDL? If the crossing of the
PDL by w(z) is confirmed then it is quite likely that extensions of GR will
be required to explain observations.

– Is the cosmological constant consistent with data? If it remains consistent
with future more detailed data then the theoretical efforts should be fo-
cused on resolving the coincidence and the cosmological constant problems
which may require anthropic principle arguments.

The main points of this brief review may be summarized as follows:

– Dark energy with negative pressure can explain SnIa cosmological data
indicating accelerating expansion of the universe.

– The existence of a cosmological constant is consistent with SnIa data but
other evolving forms of dark energy crossing the w = −1 line may provide
better fits to some of the recent data (Gold dataset).

– New observational projects are underway and are expected to lead to sig-
nificant progress in the understanding of the properties of dark energy.
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Abstract. Lowering the string scale in the TeV region provides a theoretical frame-
work for solving the mass hierarchy problem and unifying all interactions. The
apparent weakness of gravity can then be accounted by the existence of large inter-
nal dimensions, in the submillimeter region, and transverse to a braneworld where
our universe must be confined. I review the main properties of this scenario and
its implications for observations at both particle colliders, and in non-accelerator
gravity experiments. Such effects are for instance the production of Kaluza-Klein
resonances, graviton emission in the bulk of extra dimensions, and a radical change
of gravitational forces in the submillimeter range. I also discuss the warped case and
localization of gravity in the presence of infinite size extra dimensions.

10.1 Introduction

During the last few decades, physics beyond the Standard Model (SM) was
guided from the problem of mass hierarchy. This can be formulated as the
question of why gravity appears to us so weak compared to the other three
known fundamental interactions corresponding to the electromagnetic, weak
and strong nuclear forces. Indeed, gravitational interactions are suppressed
by a very high energy scale, the Planck mass MP ∼ 1019 GeV, associated to
a length lP ∼ 10−35 m, where they are expected to become important. In a
quantum theory, the hierarchy implies a severe fine tuning of the fundamental
parameters in more than 30 decimal places in order to keep the masses of
elementary particles at their observed values. The reason is that quantum
radiative corrections to all masses generated by the Higgs vacuum expectation
value (VEV) are proportional to the ultraviolet cutoff which in the presence
of gravity is fixed by the Planck mass. As a result, all masses are “attracted”
to become about 1016 times heavier than their observed values.
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Besides compositeness, there are three main theories that have been pro-
posed and studied extensively during the last years, corresponding to differ-
ent approaches of dealing with the mass hierarchy problem. (1) Low energy
supersymmetry with all superparticle masses in the TeV region. Indeed, in the
limit of exact supersymmetry, quadratically divergent corrections to the Higgs
self-energy are exactly cancelled, while in the softly broken case, they are cut-
off by the supersymmetry breaking mass splittings. (2) TeV scale strings, in
which quadratic divergences are cutoff by the string scale and low energy su-
persymmetry is not needed. (3) Split supersymmetry, where scalar masses are
heavy while fermions (gauginos and higgsinos) are light. Thus, gauge coupling
unification and dark matter candidate are preserved but the mass hierarchy
should be stabilized by a different way and the low energy world appears to be
fine-tuned. All these ideas are experimentally testable at high-energy particle
colliders and in particular at LHC. Below, I discuss their implementation in
string theory.

The appropriate and most convenient framework for low energy supersym-
metry and grand unification is the perturbative heterotic string. Indeed, in
this theory, gravity and gauge interactions have the same origin, as massless
modes of the closed heterotic string, and they are unified at the string scale
Ms. As a result, the Planck mass MP is predicted to be proportional to Ms:

MP = Ms/g , (10.1)

where g is the gauge coupling. In the simplest constructions all gauge cou-
plings are the same at the string scale, given by the four-dimensional (4d)
string coupling, and thus no grand unified group is needed for unification.
In our conventions αGUT = g2 � 0.04, leading to a discrepancy between the
string and grand unification scale MGUT by almost two orders of magnitude.
Explaining this gap introduces in general new parameters or a new scale,
and the predictive power is essentially lost. This is the main defect of this
framework, which remains though an open and interesting possibility.

The other two ideas have both as natural framework of realization type I
string theory with D-branes. Unlike in the heterotic string, gauge and gravi-
tational interactions have now different origin. The latter are described again
by closed strings, while the former emerge as excitations of open strings
with endpoints confined on D-branes [1]. This leads to a braneworld de-
scription of our universe, which should be localized on a hypersurface, i.e.
a membrane extended in p spatial dimensions, called p-brane (see Fig. 10.1).
Closed strings propagate in all nine dimensions of string theory: in those ex-
tended along the p-brane, called parallel, as well as in the transverse ones.
On the contrary, open strings are attached on the p-brane. Obviously, our
p-brane world must have at least the three known dimensions of space. But
it may contain more: the extra d‖ = p − 3 parallel dimensions must have
a finite size, in order to be unobservable at present energies, and can be
as large as TeV−1 ∼ 10−18 m [2]. On the other hand, transverse dimen-
sions interact with us only gravitationally and experimental bounds are much



10 The Physics of Extra Dimensions 295

open string

closed string

Extra dimension(s) perp. to the brane

M
in

ko
w

sk
i 3

+
1 

di
m

en
si

on
s

d   extra dimensions

||

p=3+d -dimensional brane
// 3-dimensional brane

Fig. 10.1. In the type I string framework, our Universe contains, besides the three
known spatial dimensions (denoted by a single line), some extra dimensions (d‖ =
p− 3) parallel to our world p-brane where endpoints of open strings are confined, as
well as some transverse dimensions where only gravity described by closed strings
can propagate

weaker: their size should be less than about 0.1 mm [3]. In the following, I
review the main properties and experimental signatures of low string scale
models [4, 5].

10.2 Framework

In type I theory, the different origin of gauge and gravitational interactions
implies that the relation between the Planck and string scales is not linear as
(10.1) of the heterotic string. The requirement that string theory should be
weakly coupled, constrain the size of all parallel dimensions to be of order of
the string length, while transverse dimensions remain unrestricted. Assuming
an isotropic transverse space of n = 9 − p compact dimensions of common
radius R⊥, one finds:

M2
P =

1
g4

M2+n
s Rn

⊥, gs � g2 . (10.2)

where gs is the string coupling. It follows that the type I string scale can
be chosen hierarchically smaller than the Planck mass [4, 6] at the expense
of introducing extra large transverse dimensions felt only by gravity, while
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keeping the string coupling small [4]. The weakness of 4d gravity compared
to gauge interactions (ratio MW /MP ) is then attributed to the largeness of
the transverse space R⊥ compared to the string length ls = M−1

s .
An important property of these models is that gravity becomes effectively

(4 + n)-dimensional with a strength comparable to those of gauge interac-
tions at the string scale. The first relation of (10.2) can be understood as a
consequence of the (4 + n)-dimensional Gauss law for gravity, with

M
(4+n)
∗ = M2+n

s /g4 (10.3)

the effective scale of gravity in 4 + n dimensions. Taking Ms � 1 TeV, one
finds a size for the extra dimensions R⊥ varying from 108 km, .1 mm, down
to a Fermi for n = 1, 2, or 6 large dimensions, respectively. This shows that
while n = 1 is excluded, n ≥ 2 is allowed by present experimental bounds on
gravitational forces [3, 7]. Thus, in these models, gravity appears to us very
weak at macroscopic scales because its intensity is spread in the “hidden”
extra dimensions. At distances shorter than R⊥, it should deviate from New-
ton’s law, which may be possible to explore in laboratory experiments (see
Fig. 10.2).

The main experimental implications of TeV scale strings in particle accel-
erators are of three types, in correspondence with the three different sec-
tors that are generally present: (i) new compactified parallel dimensions,
(ii) new extra large transverse dimensions and low scale quantum gravity,
and (iii) genuine string and quantum gravity effects. On the other hand,
there exist interesting implications in non accelerator table-top experiments
due to the exchange of gravitons or other possible states living in the
bulk.

tungsten
fiber

mirror for
optical readout

detector
mass (Al)

source
mass disks
(Cu)

5 cm

Fig. 10.2. Torsion pendulum that tested Newton’s law at 130 nm. Several sources
of background noise were eliminated using appropriate devices
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10.3 Experimental Implications in Accelerators

10.3.1 World-brane Extra Dimensions

In this case RMs >∼ 1, and the associated compactification scale R−1
‖ would

be the first scale of new physics that should be found increasing the beam
energy [2, 8]. There are several reasons for the existence of such dimensions.
It is a logical possibility, since out of the six extra dimensions of string the-
ory only two are needed for lowering the string scale, and thus the effective
p-brane of our world has in general d‖ ≡ p − 3 ≤ 4. Moreover, they can be
used to address several physical problems in braneworld models, such as ob-
taining different SM gauge couplings, explaining fermion mass hierarchies due
to different localization points of quarks and leptons in the extra dimensions,
providing calculable mechanisms of supersymmetry breaking, etc.

The main consequence is the existence of Kaluza-Klein (KK) excitations
for all SM particles that propagate along the extra parallel dimensions. Their
masses are given by:

M2
m = M2

0 +
m2

R2
‖
; m = 0,±1,±2, . . . (10.4)

where we used d‖ = 1, and M0 is the higher dimensional mass. The zero-mode
m = 0 is identified with the 4d state, while the higher modes have the same
quantum numbers with the lowest one, except for their mass given in (10.4).
There are two types of experimental signatures of such dimensions [8, 9, 10]:
(i) virtual exchange of KK excitations, leading to deviations in cross-sections
compared to the SM prediction, that can be used to extract bounds on the
compactification scale; (ii) direct production of KK modes.

On general grounds, there can be two different kinds of models with quali-
tatively different signatures depending on the localization properties of matter
fermion fields. If the latter are localized in 3d brane intersections, they do not
have excitations and KK momentum is not conserved because of the breaking
of translation invariance in the extra dimension(s). KK modes of gauge bosons
are then singly produced giving rise to generally strong bounds on the com-
pactification scale and new resonances that can be observed in experiments.
Otherwise, they can be produced only in pairs due to the KK momentum con-
servation, making the bounds weaker but the resonances difficult to observe.

When the internal momentum is conserved, the interaction vertex involv-
ing KK modes has the same 4d tree-level gauge coupling. On the other hand,
their couplings to localized matter have an exponential form factor suppress-
ing the interactions of heavy modes. This form factor can be viewed as the
fact that the branes intersection has a finite thickness. For instance, the cou-
pling of the KK excitations of gauge fields Aμ(x, y) =

∑
mAμm exp imyR‖

to the
charge density jμ(x) of massless localized fermions is described by the effective
action [11]:
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∫
d4x

∑
m

e
− ln 16

m2l2s
2R2

‖ jμ(x)Aμm(x) . (10.5)

After Fourier transform in position space, it becomes:
∫

d4xdy
1

(2π ln 16)2
e−

y2M2
s

2 ln 16 jμ(x)Aμ(x, y) , (10.6)

from which we see that localized fermions form a Gaussian distribution of
charge with a width σ =

√
ln 16 ls ∼ 1.66 ls.

To simplify the analysis, let us consider first the case d‖ = 1 where
some of the gauge fields arise from an effective 4-brane, while fermions are
localized states on brane intersections. Since the corresponding gauge cou-
plings are reduced by the size of the large dimension R‖Ms compared to
the others, one can account for the ratio of the weak to strong interactions
strengths if the SU(2) brane extends along the extra dimension, while SU(3)
does not. As a result, there are 3 distinct cases to study [10], denoted by
(t, l, l), (t, l, t) and (t, t, l), where the three positions in the brackets corre-
spond to the three SM gauge group factors SU(3)× SU(2)× U(1) and those
with l (longitudinal) feel the extra dimension, while those with t (transverse)
do not.

In the (t, l, l) case, there are KK excitations of SU(2)×U(1) gauge bosons:
W

(m)
± , γ(m) and Z(m). Performing a χ2 fit of the electroweak observables,

one finds that if the Higgs is a bulk state (l), R−1
‖ >∼ 3.5 TeV [12]. This

implies that LHC can produce at most the first KK mode. Different choices
for localization of matter and Higgs fields lead to bounds, lying in the range
1− 5 TeV [12].

In addition to virtual effects, KK excitations can be produced on-shell
at LHC as new resonances [9] (see Fig. 10.3). There are two different chan-
nels, neutral Drell–Yan processes pp → l+l−X and the charged channel l±ν,
corresponding to the production of the KK modes γ(1), Z(1) and W

(1)
± , respec-

tively. The discovery limits are about 6 TeV, while the exclusion bounds 15
TeV. An interesting observation in the case of γ(1) +Z(1) is that interferences
can lead to a “dip” just before the resonance. There are some ways to dis-
tinguish the corresponding signals from other possible origin of new physics,
such as models with new gauge bosons. In fact, in the (t, l, l) and (t, l, t) cases,
one expects two resonances located practically at the same mass value. This
property is not shared by most of other new gauge boson models. Moreover,
the heights and widths of the resonances are directly related to those of SM
gauge bosons in the corresponding channels.

In the (t, l, t) case, only the SU(2) factor feels the extra dimension and
the limits set by the KK states of W± remain the same. On the other hand,
in the (t, t, l) case where only U(1)Y feels the extra dimension, the limits are
weaker and the exclusion bound is around 8 TeV. In addition to these simple
possibilities, brane constructions lead often to cases where part of U(1)Y is t
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Fig. 10.3. Production of the first KK modes of the photon and of the Z boson at
LHC, decaying to electron-positron pairs. The number of expected events is plotted
as a function of the energy of the pair in GeV. From highest to lowest: excitation of
γ + Z, γ and Z

and part is l. If SU(2) is l the limits come again from W±, while if it is t then
it will be difficult to distinguish this case from a generic extra U(1)′. A good
statistics would be needed to see the deviation in the tail of the resonance as
being due to effects additional to those of a generic U(1)′ resonance. Finally,
in the case of two or more parallel dimensions, the sum in the exchange of
the KK modes diverges in the limit R‖Ms >> 1 and needs to be regularized
using the form factor (10.5). Cross-sections become bigger yielding stronger
bounds, while resonances are closer implying that more of them could be
reached by LHC.

On the other hand, if all SM particles propagate in the extra dimen-
sion (called universal)1, KK modes can only be produced in pairs and the
lower bound on the compactification scale becomes weaker, of order of 300–
500 GeV. Moreover, no resonances can be observed at LHC, so that this
scenario appears very similar to low energy supersymmetry. In fact, KK
parity can even play the role of R-parity, implying that the lightest KK
mode is stable and can be a dark matter candidate in analogy to the
LSP [13].

1 Although interesting, this scenario seems difficult to be realized, since 4d chirality
requires non-trivial action of orbifold twists with localized chiral states at the fixed
points.



300 I. Antoniadis

10.3.2 Extra Large Transverse Dimensions

The main experimental signal is gravitational radiation in the bulk from any
physical process on the world-brane. In fact, the very existence of branes
breaks translation invariance in the transverse dimensions and gravitons can
be emitted from the brane into the bulk. During a collision of center of mass
energy

√
s, there are∼ (

√
sR⊥)n KK excitations of gravitons with tiny masses,

that can be emitted. Each of these states looks from the 4d point of view as a
massive, quasi-stable, extremely weakly coupled (s/M2

P suppressed) particle
that escapes from the detector. The total effect is a missing-energy cross-
section roughly of order:

(
√

sR⊥)n

M2
P

∼ 1
s

(√
s

Ms

)n+2

. (10.7)

Explicit computation of these effects leads to the bounds given in Table 10.1.
However, larger radii are allowed if one relaxes the assumption of isotropy,

by taking for instance two large dimensions with different radii.
Figure 10.4 shows the cross-section for graviton emission in the bulk, cor-

responding to the process pp→ jet+ graviton at LHC, together with the SM
background [14]. For a given value of Ms, the cross-section for graviton emis-
sion decreases with the number of large transverse dimensions, in contrast to
the case of parallel dimensions. The reason is that gravity becomes weaker if
there are more dimensions because there is more space for the gravitational
field to escape. There is a particular energy and angular distribution of the
produced gravitons that arise from the distribution in mass of KK states of
spin-2. This can be contrasted to other sources of missing energy and might
be a smoking gun for the extra dimensional nature of such a signal.

In Table 10.1, there are also included astrophysical and cosmological
bounds. Astrophysical bounds [15, 16] arise from the requirement that the
radiation of gravitons should not carry on too much of the gravitational

Table 10.1. Limits on R⊥ in mm

Experiment n = 2 n = 4 n = 6

Collider bounds

LEP 2 5 × 10−1 2 × 10−8 7 × 10−11

Tevatron 5 × 10−1 10−8 4 × 10−11

LHC 4 × 10−3 6 × 10−10 3 × 10−12

NLC 10−2 10−9 6 × 10−12

Present non-collider bounds

SN1987A 3 × 10−4 10−8 6 × 10−10

COMPTEL 5 × 10−5 - -



10 The Physics of Extra Dimensions 301

n

n

M(4+n)

Fig. 10.4. Missing energy due to graviton emission at LHC, as a function of the
higher-dimensional gravity scale M∗, produced together with a hadronic jet. The
expected cross-section is shown for n = 2 and n = 4 extra dimensions, together with
the SM background

binding energy released during core collapse of supernovae. In fact, the mea-
surements of Kamiokande and IMB for SN1987A suggest that the main chan-
nel is neutrino fluxes. The best cosmological bound [17] is obtained from
requiring that decay of bulk gravitons to photons do not generate a spike in
the energy spectrum of the photon background measured by the COMPTEL
instrument. Bulk gravitons are expected to be produced just before nucle-
osynthesis due to thermal radiation from the brane. The limits assume that
the temperature was at most 1 MeV as nucleosynthesis begins, and become
stronger if temperature is increased.

10.3.3 String Effects

At low energies, the interaction of light (string) states is described by an effec-
tive field theory. Their exchange generates in particular four-fermion operators
that can be used to extract independent bounds on the string scale. In analogy
with the bounds on longitudinal extra dimensions, there are two cases depend-
ing on the localization properties of matter fermions. If they come from open
strings with both ends on the same stack of branes, exchange of massive open
string modes gives rise to dimension eight effective operators, involving four
fermions and two space-time derivatives [11, 18]. The corresponding bounds
on the string scale are then around 500 GeV. On the other hand, if matter
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fermions are localized on non-trivial brane intersections, one obtains dimen-
sion six four-fermion operators and the bounds become stronger: Ms >∼ 2− 3
TeV [5, 11]. At energies higher than the string scale, new spectacular phe-
nomena are expected to occur, related to string physics and quantum gravity
effects, such as possible micro-black hole production [19]. Particle accelerators
would then become the best tools for studying quantum gravity and string
theory.

10.4 Supersymmetry in the Bulk
and Short Range Forces

10.4.1 Sub-millimeter Forces

Besides the spectacular predictions in accelerators, there are also modifications
of gravitation in the sub-millimeter range, which can be tested in “table-top”
experiments that measure gravity at short distances. There are three cate-
gories of such predictions:
(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n, which can be
observable for n = 2 large transverse dimensions of sub-millimeter size. This
case is particularly attractive on theoretical grounds because of the logarith-
mic sensitivity of SM couplings on the size of transverse space [20], that allows
to determine the hierarchy [21].
(ii) New scalar forces in the sub-millimeter range, related to the mecha-
nism of supersymmetry breaking, and mediated by light scalar fields ϕ with
masses [4, 22]:

mϕ �
m2
susy

MP
� 10−4 − 10−6 eV , (10.8)

for a supersymmetry breaking scale msusy � 1 − 10 TeV. They correspond
to Compton wavelengths of 1 mm to 10 μm. msusy can be either 1/R‖ if
supersymmetry is broken by compactification [22], or the string scale if it is
broken “maximally” on our world-brane [4]. A universal attractive scalar force
is mediated by the radion modulus ϕ ≡ MP lnR, with R the radius of the
longitudinal or transverse dimension(s). In the former case, the result (10.8)
follows from the behavior of the vacuum energy density Λ ∼ 1/R4

‖ for large
R‖ (up to logarithmic corrections). In the latter, supersymmetry is broken
primarily on the brane, and thus its transmission to the bulk is gravitationally
suppressed, leading to (10.8). For n = 2, there may be an enhancement factor
of the radion mass by lnR⊥Ms � 30 decreasing its wavelength by an order of
magnitude [21].

The coupling of the radius modulus to matter relative to gravity can be
easily computed and is given by:

√
αϕ =

1

M

∂M

∂ϕ
; αϕ =

⎧⎨
⎩

∂ ln ΛQCD
∂ ln R


 1
3

for R‖

2n
n+2

= 1 − 1.5 for R⊥
(10.9)
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where M denotes a generic physical mass. In the longitudinal case, the cou-
pling arises dominantly through the radius dependence of the QCD gauge cou-
pling [22], while in the case of transverse dimension, it can be deduced from
the rescaling of the metric which changes the string to the Einstein frame and
depends slightly on the bulk dimensionality (α = 1 − 1.5 for n = 2 − 6) [21].
Such a force can be tested in microgravity experiments and should be con-
trasted with the change of Newton’s law due the presence of extra dimensions
that is observable only for n = 2 [3, 7]. The resulting bounds from an analysis
of the radion effects are [3]:

M∗ >∼ 3− 4.5 TeV for n = 2− 6 . (10.10)

In principle there can be other light moduli which couple with even larger
strengths. For example the dilaton, whose VEV determines the string cou-
pling, if it does not acquire large mass from some dynamical supersymmetric
mechanism, can lead to a force of strength 2000 times bigger than gravity [23].
(iii) Non universal repulsive forces much stronger than gravity, mediated by
possible abelian gauge fields in the bulk [15, 24]. Such fields acquire tiny masses
of the order of M2

s /MP , as in (10.8), due to brane localized anomalies [24]. Al-
though their gauge coupling is infinitesimally small, gA ∼ Ms/MP � 10−16,
it is still bigger that the gravitational coupling E/MP for typical energies
E ∼ 1 GeV, and the strength of the new force would be 106 − 108 stronger
than gravity. This is an interesting region which will be soon explored in
micro-gravity experiments (see Fig. 10.5). Note that in this case supernova
constraints impose that there should be at least four large extra dimensions
in the bulk [15].

In Fig. 10.5 we depict the actual information from previous, present and
upcoming experiments [7, 21]. The solid lines indicate the present limits from
the experiments indicated. The excluded regions lie above these solid lines.
Measuring gravitational strength forces at short distances is challenging. The
dashed thick lines give the expected sensitivity of the various experiments,
which will improve the actual limits by roughly two orders of magnitude,
while the horizontal dashed lines correspond to the theoretical predictions for
the graviton in the case n = 2 and for the radion in the transverse case. These
limits are compared to those obtained from particle accelerator experiments in
Table 10.1. Finally, in Figs. 10.6 and 10.7, we display recent improved bounds
for new forces at very short distances by focusing on the right hand side of
Fig. 10.5, near the origin [7].

10.4.2 Brane Non-linear Supersymmetry

When the closed string sector is supersymmetric, supersymmetry on a generic
brane configuration is non-linearly realized even if the spectrum is not super-
symmetric and brane fields have no superpartners. The reason is that the
gravitino must couple to a conserved current locally, implying the existence
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Fig. 10.5. Present limits on non-Newtonian forces at short distances (regions above
dotted lines), as a function of their range λ and their strength relative to gravity α.
The limits are compared to new forces mediated by the graviton in the case of two
large extra dimensions, and by the radion

of a goldstino on the brane world-volume. The goldstino is exactly massless
in the infinite (transverse) volume limit and is expected to acquire a small
mass suppressed by the volume, of order (10.8). In the standard realization,
its coupling to matter is given via the energy momentum tensor [25], while in

10 -6 10 -5 10 -4 10 -3

Dilaton

Gauge 
Bosons

λ(meters)

α

10 8

10 4

10 0
Washington

ColoradoModuli

KK gravitons

Lamoreaux

Stanford 1

Stanford 2 

Fig. 10.6. Bounds on non-Newtonian forces in the range 6-20 μm (see S. J. Smullin
et al., in [7])
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Fig. 10.7. Bounds on non-Newtonian forces in the range around 200 nm (see
R. S. Decca et al., in [7]). Curves 4 and 5 correspond to Stanford and Colorado
experiments, respectively, of Fig. 10.6 (see also J C. Long and J. C. Price of [7])

general there are more terms invariant under non-linear supersymmetry that
have been classified, up to dimension eight [26, 27].

An explicit computation was performed for a generic intersection of two
brane stacks, leading to three irreducible couplings, besides the standard
one [27]: two of dimension six involving the goldstino, a matter fermion and a
scalar or gauge field, and one four-fermion operator of dimension eight. Their
strength is set by the goldstino decay constant κ, up to model-independent
numerical coefficients which are independent of the brane angles. Obviously,
at low energies the dominant operators are those of dimension six. In the
minimal case of (non-supersymmetric) SM, only one of these two operators
may exist, that couples the goldstino χ with the Higgs H and a lepton dou-
blet L:

Lintχ = 2κ(DμH)(LDμχ) + h.c. , (10.11)

where the goldstino decay constant is given by the total brane tension

1
2 κ2

= N1 T1 + N2 T2 ; Ti =
M4
s

4π2g2
i

, (10.12)

with Ni the number of branes in each stack. It is important to notice that the
effective interaction (10.11) conserves the total lepton number L, as long as
we assign to the goldstino a total lepton number L(χ) = −1 [28]. To simplify
the analysis, we will consider the simplest case where (10.11) exists only for
the first generation and L is the electron doublet [28].

The effective interaction (10.11) gives rise mainly to the decays W± → e±χ
and Z,H → νχ. It turns out that the invisible Z width gives the strongest
limit on κ which can be translated to a bound on the string scale Ms >∼
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Fig. 10.8. Higgs branching rations, as functions either of the Higgs mass mH for
a fixed value of the string scale Ms 
 2M = 600 GeV, or of M 
 Ms/2 for
mH = 115 GeV

500 GeV, comparable to other collider bounds. This allows for the striking
possibility of a Higgs boson decaying dominantly, or at least with a sizable
branching ratio, via such an invisible mode, for a wide range of the parameter
space (Ms,mH), as seen in Fig. 10.8.

10.5 Electroweak Symmetry Breaking

Non-supersymmetric TeV strings offer also a framework to realize gauge sym-
metry breaking radiatively. Indeed, from the effective field theory point of
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view, one expects quadratically divergent one-loop contributions to the masses
of scalar fields. The divergences are cut off by Ms and if the corrections are
negative, they can induce electroweak symmetry breaking and explain the
mild hierarchy between the weak and a string scale at a few TeV, in terms of
a loop factor [29]. More precisely, in the minimal case of one Higgs doublet
H , the scalar potential is:

V = λ(H†H)2 + μ2(H†H) , (10.13)

where λ arises at tree-level. Moreover, in any model where the Higgs field
comes from an open string with both ends fixed on the same brane stack, it
is given by an appropriate truncation of a supersymmetric theory. Within the
minimal spectrum of the SM, λ = (g2

2 + g′2)/8, with g2 and g′ the SU(2) and
U(1)Y gauge couplings. On the other hand, μ2 is generated at one loop:

μ2 = −ε2 g2 M2
s , (10.14)

where ε is a loop factor that can be estimated from a toy model computation
and varies in the region ε ∼ 10−1 − 10−3.

Indeed, consider for illustration a simple case where the whole one-loop
effective potential of a scalar field can be computed. We assume for instance
one extra dimension compactified on a circle of radius R > 1 (in string units).
An interesting situation is provided by a class of models where a non-vanishing
VEV for a scalar (Higgs) field φ results in shifting the mass of each KK
excitation by a constant a(φ):

M2
m =

(
m + a(φ)

R

)2

, (10.15)

with m the KK integer momentum number. Such mass shifts arise for in-
stance in the presence of a Wilson line, a = q

∮
dy
2π gA, where A is the internal

component of a gauge field with gauge coupling g, and q is the charge of a
given state under the corresponding generator. A straightforward computa-
tion shows that the φ-dependent part of the one-loop effective potential is
given by [30]:

Veff = −Tr(−)F
R

32 π3/2

∑
n

e2πina

∫ ∞

0

dl l3/2fs(l) e−π
2n2R2l (10.16)

where F = 0, 1 for bosons and fermions, respectively. We have included a
regulating function fs(l) which contains for example the effects of string os-
cillators. To understand its role we will consider the two limits R >> 1 and
R << 1. In the first case only the l → 0 region contributes to the integral.
This means that the effective potential receives sizable contributions only
from the infrared (field theory) degrees of freedom. In this limit we would
have fs(l)→ 1. For example, in the string model considered in [29]:
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fs(l) =
[

1
4l

θ2

η3
(il +

1
2
)
]4

→ 1 for l→ 0 (10.17)

and the field theory result is finite and can be explicitly computed. As a
result of the Taylor expansion around a = 0, we are able to extract the one-
loop contribution to the coefficient of the term of the potential quadratic
in the Higgs field. It is given by a loop factor times the compactification
scale [30]. One thus obtains μ2 ∼ g2/R2 up to a proportionality constant which
is calculable in the effective field theory. On the other hand, if we consider R→
0, which by T -duality corresponds to taking the extra dimension as transverse
and very large, the one-loop effective potential receives contributions from
the whole tower of string oscillators as appearing in fs(l), leading to squared
masses given by a loop factor times M2

s , according to (10.14).
More precisely, from the expression (10.16), one finds:

ε2(R) =
1

2π2

∫ ∞

0

dl

(2 l)5/2
θ4
2

4η12

(
il +

1
2

)
R3

∑
n

n2e−2πn2R2l (10.18)

which is plotted in Fig. 10.9. For the asymptotic value R→ 0 (corresponding
upon T-duality to a large transverse dimension of radius 1/R), ε(0) � 0.14,
and the effective cut-off for the mass term is Ms, as can be seen from(10.14).
At large R, μ2(R) falls off as 1/R2, which is the effective cut-off in the limit
R → ∞, as we argued above, in agreement with field theory results in the
presence of a compactified extra dimension [22, 31]. In fact, in the limit R→
∞, an analytic approximation to ε(R) gives:

0.25 1.00 1.75 2.50 3.25 4.00 4.75
R

0.00
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0.10

0.15

0.20

ε

Fig. 10.9. The coefficient ε of the one loop Higgs mass (10.14)
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ε(R) � ε∞
MsR

, ε2
∞ =

3 ζ(5)
4 π4

� 0.008 (10.19)

The potential (10.13) has the usual minimum, given by the VEV of the
neutral component of the Higgs doublet v =

√
−μ2/λ. Using the relation of v

with the Z gauge boson mass, M2
Z = (g2

2 + g′2)v2/4, and the expression of the
quartic coupling λ, one obtains for the Higgs mass a prediction which is the
MSSM value for tanβ → ∞ and mA → ∞: mH = MZ . The tree level Higgs
mass is known to receive important radiative corrections from the top-quark
sector and rises to values around 120 GeV. Furthermore, from (10.14), one
can compute Ms in terms of the Higgs mass m2

H = −2μ2:

Ms =
mH√
2 gε

(10.20)

yielding naturally values in the TeV range.

10.6 Standard Model on D-branes

The gauge group closest to the Standard Model one can easily obtain with
D-branes is U(3)× U(2)× U(1). The first factor arises from three coincident
“color” D-branes. An open string with one end on them is a triplet under
SU(3) and carries the same U(1) charge for all three components. Thus, the
U(1) factor of U(3) has to be identified with gauged baryon number. Simi-
larly, U(2) arises from two coincident “weak” D-branes and the corresponding
abelian factor is identified with gauged weak-doublet number. Finally, an ex-
tra U(1) D-brane is necessary in order to accommodate the Standard Model
without breaking the baryon number [32]. In principle this U(1) brane can
be chosen to be independent of the other two collections with its own gauge
coupling. To improve the predictability of the model, we choose to put it on
top of either the color or the weak D-branes [33]. In either case, the model
has two independent gauge couplings g3 and g2 corresponding, respectively,
to the gauge groups U(3) and U(2). The U(1) gauge coupling g1 is equal to
either g3 or g2.

Let us denote by Q3, Q2 and Q1 the three U(1) charges of U(3)×U(2)×
U(1), in a self explanatory notation. Under SU(3)×SU(2)×U(1)3×U(1)2×
U(1)1, the members of a family of quarks and leptons have the following
quantum numbers:

Q (3,2; 1, w, 0)1/6
uc (3̄,1;−1, 0, x)−2/3

dc (3̄,1;−1, 0, y)1/3 (10.21)
L (1,2; 0, 1, z)−1/2

lc (1,1; 0, 0, 1)1
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The values of the U(1) charges x, y, z, w will be fixed below so that they lead
to the right hypercharges, shown for completeness as subscripts.

It turns out that there are two possible ways of embedding the Stan-
dard Model particle spectrum on these stacks of branes [32], which are shown
pictorially in Fig. 10.10. The quark doublet Q corresponds necessarily to a
massless excitation of an open string with its two ends on the two differ-
ent collections of branes (color and weak). As seen from the figure, a fourth
brane stack is needed for a complete embedding, which is chosen to be a
U(1)b extended in the bulk. This is welcome since one can accommodate
right handed neutrinos as open string states on the bulk with sufficiently
small Yukawa couplings suppressed by the large volume of the bulk [34].
The two models are obtained by an exchange of the up and down anti-
quarks, uc and dc, which correspond to open strings with one end on the
color branes and the other either on the U(1) brane, or on the U(1)b in the
bulk. The lepton doublet L arises from an open string stretched between the
weak branes and U(1)b, while the antilepton lc corresponds to a string with
one end on the U(1) brane and the other in the bulk. For completeness, we
also show the two possible Higgs states Hu and Hd that are both necessary
in order to give tree-level masses to all quarks and leptons of the heaviest
generation.

The weak hypercharge Y is a linear combination of the three U(1)’s:

Y = Q1 +
1
2
Q2 + c3Q3 ; c3 = −1/3 or 2/3 , (10.22)

where QN denotes the U(1) generator of U(N) normalized so that the fun-
damental representation of SU(N) has unit charge. The corresponding U(1)
charges appearing in (10.21) are x = −1 or 0, y = 0 or 1, z = −1, and w = 1
or −1, for c3 = −1/3 or 2/3, respectively. The hypercharge coupling gY is

Fig. 10.10. A minimal Standard Model embedding on D-branes
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given by2:
1
g2
Y

=
2
g2
1

+
4c22
g2
2

+
6c23
g2
3

. (10.23)

It follows that the weak angle sin2 θW , is given by:

sin2 θW ≡
g2
Y

g2
2 + g2

Y

=
1

2 + 2g2
2/g

2
1 + 6c23g

2
2/g

2
3

, (10.24)

where gN is the gauge coupling of SU(N) and g1 = g2 or g1 = g3 at the string
scale. In order to compare the theoretical predictions with the experimental
value of sin2 θW at Ms, we plot in Fig. 10.11 the corresponding curves as
functions of Ms.

The solid line is the experimental curve. The dashed line is the plot of
the function (10.24) for g1 = g2 with c3 = −1/3 while the dotted-dashed
line corresponds to g1 = g3 with c3 = 2/3. The other two possibilities are
not shown because they lead to a value of Ms which is too high to protect
the hierarchy. Thus, the second case, where the U(1) brane is on top of the
color branes, is compatible with low energy data for Ms ∼ 6 − 8 TeV and
gs � 0.9.

From (10.24) and Fig. 10.11, we find the ratio of the SU(2) and SU(3)
gauge couplings at the string scale to be α2/α3 ∼ 0.4. This ratio can be
arranged by an appropriate choice of the relevant moduli. For instance, one
may choose the color and U(1) branes to be D3 branes while the weak branes
to be D7 branes. Then, the ratio of couplings above can be explained by
choosing the volume of the four compact dimensions of the seven branes to
be V4 = 2.5 in string units. This being larger than one is consistent with
the picture above. Moreover it predicts an interesting spectrum of KK states

0 2 4 6 8 10
Ms inTeV

0.24

0.25

0.26

0.27

Fig. 10.11. The experimental value of sin2 θW (thick curve), and the theoretical
predictions (10.24)

2 The gauge couplings g2,3 are determined at the tree-level by the string coupling
and other moduli, like radii of longitudinal dimensions. In higher orders, they also
receive string threshold corrections.
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for the Standard model, different from the naive choices that have appeared
hitherto: the only Standard Model particles that have KK descendants are
the W bosons as well as the hypercharge gauge boson. However, since the
hypercharge is a linear combination of the three U(1)’s, the massive U(1)
KK gauge bosons do not couple to the hypercharge but to the weak doublet
number.

10.7 Non-compact Extra Dimensions
and Localized Gravity

There are several motivations to study localization of gravity in non-compact
extra dimensions: (i) it avoids the problem of fixing the moduli associated to
the size of the compactification manifold; (ii) it provides a new approach to
the mass hierarchy problem; (iii) there are modifications of gravity at large
distances that may have interesting observational consequences. Two types
of models have been studied: warped metrics in curved space [35], and in-
finite size extra dimensions in flat space [36]. The former, although largely
inspired by stringy developments and having used many string-theoretic tech-
niques, have not yet a clear and calculable string theory realization [37]. In
any case, since curved space is always difficult to handle in string theory, in
the following we concentrate mainly on the latter, formulated in flat space
with gravity localized on a subspace of the bulk. It turns out that these
models of induced gravity have an interesting string theory realization [38]
that we describe below, after presenting first a brief overview of the warped
case [39].

10.7.1 Warped Spaces

In these models, space-time is a slice of anti de Sitter space (AdS) in d = 5 di-
mensions while our universe forms a four-dimensional (4d) flat boundary [35].
The corresponding line element is:

ds2 = e−2k|y|ημνdxμdxν + dy2 ; Λ = −24M3k2 , (10.25)

where M,Λ are the 5d Planck mass and cosmological constant, respectively,
and the parameter k is the curvature of AdS5. The fifth coordinate y is re-
stricted on the interval [0, πrc]. Thus, this model requires two ‘branes’, a
UV and an IR, located at the two end-points of the interval, y = 0 and
y = πrc, respectively. The vanishing of the 4d cosmological constant requires
to fine tune the two tensions: T = −T ′ = 24M3k2. The 4d Planck mass is
given by:

M2
P =

1
k

(1− e−2πkrc)M3 . (10.26)
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Note that the IR brane can move to infinity by taking the limit rc → ∞,
while MP is kept finite and thus 4d gravity is always present on the brane.
The reason is that the internal volume remains finite in the non-compact
limit along the positive y axis. As a result, gravity is kept localized on the UV
brane, while the Newtonian potential gets corrections, 1/r+1/k2r3, which are
identical with those arising in the compact case of two flat extra dimensions.
Using the experimental limit k−1 <∼ 0.1 mm and the relation (10.26), one
finds a bound for the 5d gravity scale M >∼ 108 GeV, corresponding to a
brane tension T >∼ 1 TeV. Notice that this bound is not valid in the compact
case of six extra dimensions, because their size is in the fermi range and thus
the 1/r3 deviations of Newton’s law are cutoff at shorter distances.

10.7.2 The Induced Gravity Model

The dgp model and its generalizations are specified by a bulk Einstein-Hilbert
(eh) term and a four-dimensional eh term [36]:

M2+n

∫
M4+n

d4xdny
√
GR(4+n) + M2

P

∫
M4

d4x
√
gR(4) ; M2

P ≡ rncM
2+n

(10.27)
with M and MP the (possibly independent) respective Planck scales. The
scale M ≥ 1 TeV would be related to the short-distance scale below which
uv quantum gravity or stringy effects are important. The four-dimensional
metric is the restriction of the bulk metric gμν = Gμν | and we assume
the world3 rigid, allowing the gauge Giμ| = 0 with i ≥ 5. Finally,
only intrinsic curvature terms are omitted but no Gibbons–Hawking term is
needed.

Co-dimension One

In the case of co-dimension one bulk (n = 1) and δ-function localization, it
is easy to see that rc is a crossover scale where gravity changes behavior on
the world. Indeed, by Fourier transform the quadratic part of the action
(10.27) with respect to the 4d position x, at the world position y = 0, one
obtains M2+n(p2−n + rnc p

2), where p is the 4d momentum. It follows that
for distances smaller than rc (large momenta), the first term becomes irrel-
evant and the graviton propagator on the “brane” exhibits four-dimensional
behavior (1/p2) with Planck constant MP = M3rc. On the contrary, at large
distances, the first term becomes dominant and the graviton propagator ac-
quires a five-dimensional fall-off (1/p) with Planck constant M . Imposing rc
to be larger than the size of the universe, rc >∼ 1028 cm, one finds M <∼ 100

3 We avoid calling M4 a brane because, as we will see below, gravity localizes on
singularities of the internal manifold, such as orbifold fixed points. Branes with
localized matter can be introduced independently of gravity localization.
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MeV, which seems to be in conflict with experimental bounds. However, there
were arguments that these bounds can be evaded, even for values of the fun-
damental scale M−1 ∼ 1 mm that one may need for suppressing the quantum
corrections of the cosmological constant [36].

On the other hand, in the presence of non-zero brane thickness w, a new
crossover length-scale seems to appear, Rc ∼ (wrc)1/2 [40] or r

3/5
c w2/5 [41].

4d 5d

w Rc rc
↗ ↑

UV cutoff 5d or strong coupling

Below this scale, the theory acquires either again a five-dimensional behavior,
or a strong coupling regime. For rc ∼ 1028 cm, the new crossover scale is of
order Rc ∼ 10−4 − 10 m.

Higher Co-dimension

The situation changes drastically for more than one non-compact bulk di-
mensions, n > 1, due to the ultraviolet properties of the higher-dimensional
theories. Indeed, from the action (10.27), the effective potential between two
test masses in four dimensions

∫
[d3x] e−ip·x V (x) =

D(p)
1 + rnc p2 D(p)

[
T̃μνT

μν − 1
2 + n

T̃ μμ T νν

]
(10.28)

D(p) =
∫

[dnq]
fw(q)
p2 + q2

(10.29)

is a function of the bulk graviton retarded Green’s function G(x, 0; 0, 0) =∫
[d4p]×eip·xD(p) evaluated for two points localized on the world (y = y′ =

0). The integral (10.29) is uv-divergent for n > 1 unless there is a non-trivial
brane thickness profile fw(q) of width w. If the four-dimensional world has
zero thickness, fw(q) ∼ 1, the bulk graviton does not have a normalizable wave
function. It therefore cannot contribute to the induced potential, which always
takes the form V (p) ∼ 1/p2 and Newton’s law remains four-dimensional at all
distances.

For a non-zero thickness w, there is only one crossover length scale, Rc:

Rc = w
(rc
w

)n
2

, (10.30)

above which one obtains a higher-dimensional behaviour [42]. Therefore the
effective potential presents two regimes: (i) at short distances (w � r � Rc)
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the gravitational interactions are mediated by the localized four-dimensional
graviton and Newton’s potential on the world is given by V (r) ∼ 1/r and, (ii)
at large distances (r � Rc) the modes of the bulk graviton dominate, changing
the potential. Note that for n = 1 the expressions (10.28) and (10.29) are finite
and unambiguously give V (r) ∼ 1/r for r � rc. For a co-dimension bigger
than 1, the precise behavior for large-distance interactions depends crucially
on the uv completion of the theory.

4d higher d

Rc

At this point we stress a fundamental difference with the finite extra dimen-
sions scenarios. In these cases Newton’s law gets higher-dimensional at dis-
tances smaller than the characteristic size of the extra dimensions. This is
precisely the opposite of the case of infinite volume extra dimensions that we
discuss here.

As mentioned above, for higher co-dimension, there is an interplay be-
tween UV regularization and IR behavior of the theory. Indeed, several works
in the literature raised unitarity [43] and strong coupling problems [44] which
depend crucially on the uv completion of the theory. A unitary uv regu-
larization for the higher co-dimension version of the model has been pro-
posed in [45]. It would be interesting to address these questions in a pre-
cise string theory context. Actually, using for UV cutoff on the “brane”
the 4d Planck length w ∼ lP , one gets for the crossover scale (10.30):
Rc ∼ M−1(MP /M)n/2. Putting M >∼ 1 TeV leads to Rc <∼ 108(n−2) cm.
Imposing Rc >∼ 1028 cm, one then finds that the number of extra dimen-
sions must be at least six, n ≥ 6, which is realized nicely in string theory
and provides an additional motivation for studying possible string theory
realizations.

10.7.3 String Theory Realization

In the following, we explain how to realize the gravity induced model (10.27)
with n ≥ 6 as the low-energy effective action of string theory on a non-
compact six-dimensional manifoldM6 [38]. We work in the context of N = 2
supergravities in four dimensions but the mechanism for localizing gravity is
independent of the number of supersymmetries. Of course for N ≥ 3 super-
symmetries, there is no localization. We also start with the compact case and
take the decompactification limit. The localized properties are then encoded
in the different volume dependences.

In string perturbation, corrections to the four-dimensional Planck mass
are in general very restrictive. In the heterotic string, they vanish to all or-
ders in perturbation theory [46]; in type I theory, there are moduli-dependent
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corrections generated by open strings [47], but they vanish when the mani-
foldM6 is decompactified; in type II theories, they are constant, independent
of the moduli of the manifold M6, and receive contributions only from tree
and one-loop levels that we describe below (at least for supersymmetric back-
grounds) [38, 48]. Finally, in the context of M-theory, one obtains a similar
localized action of gravity kinetic terms in five dimensions, corresponding to
the strong coupling limit of type IIA string [38].

The origin of the two eh terms in (10.27) can be traced back to the per-
turbative corrections to the eight-derivative effective action of type II strings
in ten dimensions. These corrections include the tree-level and one-loop terms
given by:4

1
l8s

∫
M10

1
g2
s

R(10) +
1
l2s

∫
M10

(
2ζ(3)
g2
s

+ 4ζ(2)
)

t8t8R
4 (10.31)

− 1
l2s

∫
M10

(
2ζ(3)
g2
s

MPl4ζ(2)
)

R ∧R ∧R ∧R ∧ e ∧ e + · · ·

where φ is the dilaton field determining the string coupling gs = e〈φ〉, and the
± sign corresponds to the type iia/b theory.

On a direct product space-time M6 × R
4, the t8t8R

4 contribute in four
dimensions to R2 and R4 terms [48]. At the level of zero modes, the second
R4 term in (10.31) splits as:

∫
M6

R ∧R ∧R×
∫
M4

R(4) = χ

∫
M4

R(4) , (10.32)

where χ is the Euler number of the M6 compactification manifold. We thus
obtain the action terms:

1
l8s

∫
M4×M6

1
g2
s

R(10) +
χ

l2s

∫
M4

(
−2ζ(3)

g2
s

± 4ζ(2)
)
R(4) , (10.33)

which gives the expressions for the Planck masses M and Mp:

M2 ∼M2
s /g

1/2
s ; M2

P ∼ χ(
c0
g2
s

+ c1)M2
s , (10.34)

with c0 = −2ζ(3) and c1 = ±4ζ(2) = ±2π2/3.
It is interesting that the appearance of the induced 4d localized term

preserves N = 2 supersymmetry and is independent of the localization mech-
anism of matter fields (for instance on D-branes). Localization requires the
internal space M6 to have a non-zero Euler characteristic χ 
= 0. Actually,
in type iia/b compactified on a Calabi-Yau manifold, χ counts the differ-
ence between the numbers of N = 2 vector multiplets and hypermultiplets:
4 The rank-eight tensor t8 is defined as t8M

4 ≡ −6(trM2)2 + 24trM4. See [49] for
more details.
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χ = ±4(nV −nH) (where the graviton multiplet counts as one vector). More-
over, in the non-compact limit, the Euler number can in general split in dif-
ferent singular points of the internal space, χ =

∑
I χI , giving rise to different

localized terms at various points yI of the internal space. A number of con-
clusions (confirmed by string calculations in [38]) can be reached by looking
closely at (10.33):

$ Mp � M requires a large non-zero Euler characteristic for M6, and/or
a weak string coupling constant gs → 0.

$ Since χ is a topological invariant the localizedR(4) term coming from the
closed string sector is universal, independent of the background geometry and
dependent only on the internal topology5. It is a matter of simple inspection to
see that if one wants to have a localized eh term in less than ten dimensions,
namely something linear in curvature, with non-compact internal space in all
directions, the only possible dimension is four (or five in the strong coupling
M-theory limit).

$ In order to find the width w of the localized term, one has to do a
separate analysis. On general grounds, using dimensional analysis in the limit
MP →∞, one expects the effective width to vanish as a power of lP ≡M−1

P :
w ∼ lνP /lν−1

s with ν > 0. The computation of ν for a general Calabi-Yau space,
besides its technical difficulty, presents an additional important complication:
from the expression (10.34), lP ∼ gsls in the weak coupling limit. Thus, w
vanishes in perturbation theory and one has to perform a non-perturbative
analysis to extract its behavior. Alternatively, one can examine the case of
orbifolds. In this limit, c0 = 0, lP ∼ ls, and the hierarchy MP > M is achieved
only in the limit of large χ.

The one-loop graviton amplitude for the supersymmetric orbifold T 6/ZN ,
takes the form of a sum of quasi-localized contributions at the positions of the
fixed points xf of the orbifold [38]:

〈V 3
g 〉 ∼

1
N

∑
(h,g)

∑
xf

∫
F

d2τ

τ2
2

∫ 3∏
i=1

d2zi
τ2

1
F(h,g)(τ, zi)3

e
− (y−xf )2

α′F(h,g)(τ,zi) , (10.35)

where (h, g) denote the orbifold twists and τ = τ1 + iτ2 is the complex modu-
lus of the world-sheet torus, integrated over its fundamental domain F . The
above expression (10.35) gives the three-point amplitude involving three 4d
gravitons on-shell. Focusing on one particular fixed point xf = 0 and sending
the radii to infinity, we obtain the effective action for the quasi-localized eh
term

χ

∫
d4xd6y

√
gfw(y)R(4) (10.36)

5 Field theory computations of [50] show that the Planck mass renormalization
depends on the uv behavior of the matter fields coupling to the external metric.
But, even in the supersymmetric case, the corrections are not obviously given by
an index.
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with a width given by the four-dimensional induced Planck mass

w � lP = ls χ
−1/2 , (10.37)

and the power ν = 1.

Summary of the Results

Using w ∼ lP and the relations (10.34) in the weak coupling limit (with
c0 
= 0), the crossover radius of (10.30) is given by the string parameters
(n = 6)

Rc =
r3
c

w2
∼ gs

l4s
l3P
� gs × 1032 cm , (10.38)

for Ms � 1 TeV. Because Rc has to be of cosmological size, the string cou-
pling can be relatively small, and the Euler number |χ| � g2

s lP ∼ g2
s × 1032

must be very large. The hierarchy is obtained mainly thanks to the large
value of χ, so that lowering the bound on Rc lowers the value of χ. Our
actual knowledge of gravity at very large distances indicates [51] that Rc
should be of the order of the Hubble radius Rc � 1028 cm, which implies
gs ≥ 10−4 and |χ| >∼ 1024. A large Euler number implies only a large num-
ber of closed string massless particles with no a-priori constraint on the ob-
servable gauge and matter sectors, which can be introduced for instance on
D3-branes placed at the position where gravity localization occurs. All these
particles are localized at the orbifold fixed points (or where the Euler number
is concentrated in the general case), and should have sufficiently suppressed
gravitational-type couplings, so that their presence with such a huge multiplic-
ity does not contradict observations. Note that these results depend crucially
on the scaling of the width w in terms of the Planck length: w ∼ lνP , implying
Rc ∼ 1/l2ν+1

P in string units. If there are models with ν > 1, the required
value of χ will be much lower, becoming O(1) for ν ≥ 3/2. In this case, the
hierarchy could be determined by tuning the string coupling to infinitesimal
values, gs ∼ 10−16.

The explicit string realization of localized induced gravity models offers
a consistent framework that allows to address a certain number of interest-
ing physics problems. In particular, the effective UV cutoff and the study of
the gravity force among matter sources localized on D-branes. It would be
also interesting to perform explicit model building and study in detail the
phenomenological consequences of these models and compare to other real-
izations of TeV strings with compact dimensions.
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Dark Energy from Brane-world Gravity
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Abstract. Recent observations provide strong evidence that the universe is acceler-
ating. This confronts theory with a severe challenge. Explanations of the acceleration
within the framework of general relativity are plagued by difficulties. General rela-
tivistic models require a “dark energy” field with effectively negative pressure. An
alternative to dark energy is that gravity itself may behave differently from general
relativity on the largest scales, in such a way as to produce acceleration. The alter-
native approach of modified gravity also faces severe difficulties, but does provide
a new angle on the problem. This review considers an example of modified gravity,
provided by brane-world models that self-accelerate at late times.

11.1 Introduction

The current “standard model” of cosmology – the inflationary cold dark mat-
ter model with cosmological constant (LCDM), based on general relativity
and particle physics (the minimal supersymmetric extension of the Standard
Model) – provides an excellent fit to the wealth of high-precision observational
data [1]. In particular, independent data sets from CMB anisotropies, galaxy
surveys and SNe redshifts, provide a consistent set of model parameters. For
the fundamental energy density parameters, this is shown in Fig. 11.1. The
data indicates that the cosmic energy budget is given by

ΩΛ ≈ 0.7, ΩM ≈ 0.3 , (11.1)

leading to the dramatic conclusion that the universe is undergoing a late-time
acceleration. The data further indicates that the universe is (nearly) spatially
flat, and that the primordial perturbations are (nearly) scale-invariant, adia-
batic and Gaussian.

This standard model is remarkably successful, but we know that its the-
oretical foundation, general relativity, breaks down at high enough energies,
usually taken to be at the Planck scale,

E � Mp ∼ 1016 TeV . (11.2)
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M

Λ

No Big Bang

Fig. 11.1. Observational constraints in the (ΩΛ, ΩM ) plane (from [2])

The LCDM model can only provide limited insight into the very early
universe. Indeed, the crucial role played by inflation belies the fact that in-
flation remains an effective theory without yet a basis in fundamental theory.
A quantum gravity theory will be able to probe higher energies and earlier
times, and should provide a consistent basis for inflation, or an alternative
that replaces inflation within the standard cosmological model.

An even bigger theoretical problem than inflation is that of the recent
accelerated expansion of the universe. Within the framework of general rela-
tivity, the acceleration must originate from a dark energy field with effectively
negative pressure (w ≡ p/ρ < − 1

3 ), such as vacuum energy (w = −1) or a
slow-rolling scalar field (“quintessence”, w > −1). So far, none of the available
models has a natural explanation.

For the simplest option of vacuum energy, i.e. the LCDM model, the in-
credibly small value of the cosmological constant

ρΛ, obs =
Λ

(8πG)
∼ H2

0 M2
P ∼ (10−33 eV)2(1019 GeV)2 = 10−57 GeV4 ,

ρΛ, theory ∼ M4
fundamental > 1 TeV4 � ρΛ, obs , (11.3)

cannot be explained by current particle physics. In addition, the value needs
to be incredibly fine-tuned,
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ΩΛ ∼ ΩM , (11.4)

which also has no natural explanation. Quintessence models attempt to ad-
dress the fine-tuning problem, but do not succeed fully – and also cannot
address the problem of how Λ is set exactly to 0. Quantum gravity will hope-
fully provide a solution to the problems of vacuum energy and fine-tuning.

Alternatively, it is possible that there is no dark energy, but instead a
low-energy/ large-scale (i.e. “infrared”) modification to general relativity that
accounts for late-time acceleration. Schematically, we are modifying the geo-
metric side of the field equations,

Gμν + Gdark
μν = 8πGTμν , (11.5)

rather than the matter side,

Gμν = 8πG
(
Tμν + T dark

μν

)
, (11.6)

as in general relativity.
It is important to stress that a consistent modification of general relativity

requires a covariant formulation of the field equations in the general case, i.e.
including inhomogeneities and anisotropies. It is not sufficient to propose ad
hoc modifications of the Friedman equation, of the form

f(H2) =
8πG

3
ρ or H2 =

8πG
3

g(ρ) , (11.7)

for some functions f or g. We can compute the SNe redshifts using this equa-
tion – but we cannot compute the density perturbations without knowing the
covariant parent theory that leads to such a modified Friedmann equation.

An infra-red modification to general relativity could emerge within the
framework of quantum gravity, in addition to the ultraviolet modification that
must arise at high energies in the very early universe. The leading candidate
for a quantum gravity theory, string theory, is able to remove the infinities of
quantum field theory and unify the fundamental interactions, including grav-
ity. But there is a price – the theory is only consistent in 9 space dimensions.
Branes are extended objects of higher dimension than strings, and play a fun-
damental role in the theory, especially D-branes, on which open strings can
end. Roughly speaking, open strings, which describe the non-gravitational sec-
tor, are attached at their endpoints to branes, while the closed strings of the
gravitational sector can move freely in the higher-dimensional “bulk” space-
time. Classically, this is realised via the localization of matter and radiation
fields on the brane, with gravity propagating in the bulk (see Fig. 11.2).

The implementation of string theory in cosmology is extremely diffi-
cult, given the complexity of the theory. This motivates the development of
phenomenology, as an intermediary between observations and fundamental
theory. (Indeed, the development of inflationary cosmology has been a very
valuable exercise in phenomenology.) Brane-world cosmological models inherit
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Fig. 11.2. The confinement of matter to the brane, while gravity propagates in the
bulk (from [3])

key aspects of string theory, but do not attempt to impose the full machinery
of the theory. Instead, drastic simplifications are introduced in order to be
able to construct cosmological models that can be used to compute observa-
tional predictions (see [4] for reviews in this spirit). Cosmological data can
then be used to constrain the brane-world models, and hopefully thus provide
constraints on string theory, as well as pointers for the further development
of string theory.

It turns out that even the simplest brane-world models are remarkably
rich – and the computation of their cosmological perturbations is remarkably
complicated, and still incomplete. Here I will describe brane-world cosmologies
of Dvali-Gabadadze-Porrati (DGP) type [5]. These are 5-dimensional models,
with an infinite extra dimension. (We effectively assume that 5 of the extra
dimensions in the “parent” string theory may be ignored at low energies.)

11.2 KK Modes of the Graviton

The brane-world mechanism, whereby matter is confined to the brane while
gravity accesses the bulk, means that extra dimensions can be much larger
than in the conventional Kaluza-Klein (KK) mechanism, where matter and
gravity both access all dimensions. The dilution of gravity via the bulk ef-
fectively weakens gravity on the brane, so that the true, higher-dimensional
Planck scale can be significantly lower than the effective 4D Planck scale Mp.

The higher-dimensional graviton has massive 4D modes felt on the brane,
known as KK modes, in addition to the massless mode of 4D gravity. From
a geometric viewpoint, the KK modes can also be understood via the fact
that the projection of the null graviton 5-momentum p

(5)
a onto the brane is

timelike. If the unit normal to the brane is na, then the induced metric on the
brane is
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gab = g
(5)
ab − nanb, g

(5)
ab nanb = 1, gabn

b = 0 , (11.8)

and the 5-momentum may be decomposed as

p(5)
a = mna + pa, pan

a = 0, m = p(5)
a na , (11.9)

where pa = gabp
(5)
b is the projection along the brane, depending on the orien-

tation of the 5-momentum relative to the brane. The effective 4-momentum
of the 5D graviton is thus pa. Expanding g

(5)
ab pa(5)p

b
(5) = 0, we find that

gabp
apb = −m2 . (11.10)

It follows that the 5D graviton has an effective mass m on the brane. The
usual 4D graviton corresponds to the zero mode, m = 0, when p

(5)
a is tangent

to the brane.
The extra dimensions lead to new scalar and vector degrees of freedom

on the brane. The spin-2 5D graviton is represented by a metric perturbation
h

(5)
ab that is transverse traceless:

g
(5)
ab → g

(5)
ab + h

(5)
ab , h(5)a

a = 0 = ∂bh
(5)b

a . (11.11)

In a suitable gauge, h(5)
ab contains a 3D transverse traceless perturbation hij ,

a 3D transverse vector perturbation Σi and a scalar perturbation β, which
each satisfy the 5D wave equation:

hii = 0 = ∂jh
ij , ∂iΣ

i = 0 , (11.12)

(� + ∂2
y)

⎛
⎝ β

Σi

hij

⎞
⎠ = 0 . (11.13)

The 5 degrees of freedom (polarizations) in the 5D graviton are felt on the
brane as:

– a 4D spin-2 graviton hij (2 polarizations)
– a 4D spin-1 gravi-vector (gravi-photon) Σi (2 polarizations)
– a 4D spin-0 gravi-scalar β.

The massive modes of the 5D graviton are represented via massive modes in
all 3 of these fields on the brane. The standard 4D graviton corresponds to
the massless zero-mode of hij .

11.3 DGP Type Brane-worlds:
Self-accelerating Cosmologies

Could the late-time acceleration of the universe be a gravitational effect?1

An historical precedent is provided by attempts to explain the anomalous
1 Note that this would not remove the problem of explaining why the vacuum

energy does not gravitate.
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precession of Mercury’s perihelion by a “dark planet”. In the end, it was
discovered that a modification to Newtonian gravity was needed.

An alternative to dark energy plus general relativity is provided by mod-
els where the acceleration is due to modifications of gravity on very large
scales, r � H−1

0 . It is very difficult to produce infrared corrections to general
relativity by modifying the 4D Einstein-Hilbert action,

∫
d4x
√
−g R →

∫
d4x
√
−g f(R,RμνR

μν , . . .) . (11.14)

Typically, instabilities arise or the action has no natural motivation. The
DGP brane-world offers a higher-dimensional approach to the problem, which
effectively has infinite extra degrees of freedom from a 4D viewpoint.

Most brane-world models modify general relativity at high energies. The
main examples are those of Randall-Sundrum (RS) type [6], where a Friedman-
Robertson-Walker brane is embedded in an anti de Sitter bulk, with curvature
radius  . At low energies H � 1, the zero-mode of the graviton dominates
on the brane, and general relativity is recovered to a good approximation. At
high energies, H � 1, the massive modes of the graviton dominate over the
zero mode, and gravity on the brane behaves increasingly in a 5D way. On
the brane, the standard conservation equation holds,

ρ̇ + 3H(ρ + p) = 0 , (11.15)

but the Friedmann equation is modified by an ultraviolet correction:

H2 =
8πG

3
ρ

(
1 +

2πG 2

3
ρ

)
+

Λ

3
. (11.16)

The ρ2 term is the ultraviolet term. At low energies, this term is negligible,
and we recover H2 ∝ ρ + Λ/8πG. At high energies, gravity “leaks” off the
brane and H2 ∝ ρ2. This 5D behaviour means that a given energy density
produces a greater rate of expansion than it would in general relativity. As a
consequence, inflation in the early universe is modified in interesting ways.

In the DGP case the bulk is 5D Minkowski spacetime. Unlike the AdS
bulk of the RS model, the Minkowski bulk has infinite volume. Consequently,
there is no normalizable zero-mode of the graviton in the DGP brane-world.
Gravity leaks off the 4D brane into the bulk at large scales. At small scales,
gravity is effectively bound to the brane and 4D dynamics is recovered to a
good approximation. The transition from 4- to 5D behaviour is governed by
a crossover scale rc; the weak-field gravitational potential behaves as

Ψ ∼
{

r−1 for r � rc
r−2 for r � rc

(11.17)

Gravity leakage at late times initiates acceleration – not due to any negative
pressure field, but due to the weakening of gravity on the brane. 4D gravity is
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recovered at high energy via the lightest KK modes of the graviton, effectively
via an ultralight metastable graviton.

The energy conservation equation remains the same as in general relativity,
but the Friedman equation is modified:

ρ̇ + 3H(ρ + p) = 0 , (11.18)

H2 − H

rc
=

8πG
3

ρ . (11.19)

This shows that at early times, Hrc � 1, the general relativistic Friedman
equation is recovered. By contrast, at late times in a CDM universe, with
ρ ∝ a−3 → 0, we have

H → H∞ =
1
rc

. (11.20)

Since H0 > H∞, in order to achieve self-acceleration at late times, we require

rc � H−1
0 , (11.21)

and this is confirmed by fitting SNe observations, as shown in Fig. 11.3. This
comparison is aided by introducing a dimensionless cross-over parameter,

Ωrc =
1

4(H0rc)2
. (11.22)

It should be emphasized that the DGP Friedman (11.19) is derived covari-
antly from a 5D gravitational action,∫

d5x
√
−g(5) R(5) + rc

∫
d4x
√
−g R . (11.23)

Fig. 11.3. Constraints from SNe redshifts on DGP models. (From [7])
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LCDM and DGP can both account for the SNe observations, with the
fine-tuned values Λ ∼ H2

0 and rc ∼ H−1
0 respectively. This degeneracy may

be broken by observations based on structure formation, since the two mod-
els suppress the growth of density perturbations in different ways [8, 9]. The
distance-based SNe observations draw only upon the background 4D Fried-
man equation (11.19) in DGP models, and therefore there are quintessence
models in general relativity that can produce precisely the same SNe red-
shifts as DGP [10]. By contrast, structure formation observations require the
5D perturbations in DGP, and one cannot find equivalent general relativity
models [11].

For LCDM, the analysis of density perturbations is well understood. For
DGP it is much more subtle and complicated. Although matter is confined
to the 4D brane, gravity is fundamentally 5D, and the bulk gravitational
field responds to and backreacts on density perturbations. The evolution of
density perturbations requires an analysis based on the 5D nature of gravity.
In particular, the 5D gravitational field produces an anisotropic stress on the
4D universe. Some previous results are based on inappropriately neglecting
this stress and all 5D effects – as a consequence, the 4D Bianchi identity on
the brane is violated, i.e. ∇νGμν 
= 0, and the results are inconsistent.

When the 5D effects are incorporated [11], the 4D Bianchi identity is sat-
isfied. (The results of [11] confirm and generalize those of [8].) The consistent
modified evolution equation for density perturbations is

Δ̈ + 2HΔ̇ = 4πG
{

1− (2Hrc − 1)
3[2(Hrc)2 − 2Hrc + 1]

}
ρΔ , (11.24)
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(solid, thick), as well as for a dark energy model with the same expansion history
as DGP (solid, thick). DGP-4D (solid, thin) shows the incorrect result in which the
5D effects are set to zero. (From [11])
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where the term in braces encodes the 5D correction. The linear growth factor,
g(a) = Δ(a)/a (i.e. normalized to the flat CDM case, Δ ∝ a), is shown in
Fig. 11.4.

It must be emphasized that these results apply on subhorizon scales. On
superhorizon scales, where the 5D effects are strongest, the problem has yet to
be solved. This solution is necessary before one can compute the large-angle
CMB anisotropies. It should also be remarked that the late-time asymptotic
de Sitter solution in DGP cosmological models has a ghost problem [12], which
may have implications for the analysis of density perturbations.

11.4 Conclusion

In conclusion, DGP brane-world models, which are inspired by ideas from
string theory, provide a rich and interesting phenomenology for modified grav-
ity. These models can account for the late-time acceleration without the need
for dark energy – gravity leakage from the 4D brane at large scales leads to
self-acceleration. The 5D graviton, i.e. its KK modes, plays a crucial role,
which has been emphasized in this article.
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The Issue of Dark Energy in String Theory
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Abstract. Recent astrophysical observations, pertaining to either high-redshift
supernovae or cosmic microwave background temperature fluctuations, as those mea-
sured recently by the WMAP satellite, provide us with data of unprecedented accu-
racy, pointing towards two (related) facts: (i) our Universe is accelerated at present,
and (ii) more than 70% of its energy content consists of an unknown substance,
termed dark energy, which is believed responsible for its current acceleration. Both
of these facts are a challenge to String theory. In this review I outline briefly the
challenges, the problems and possible avenues for research towards a resolution of
the Dark Energy issue in string theory.

12.1 Introduction

Recent Astrophysical Data, from either studies of distant supernovae type
Ia [1], or precision measurements of temperature fluctuations in the cosmic
microwave background radiation from the WMAP satellite [2], point towards a
current-era acceleration of our Universe, as well as a very peculiar energy bud-
get for it: 70% of its energy density consists of an unknown energy substance,
termed Dark Energy. In fact, global best-fit models from a compilation of all
the presently available data are based on simple Einstein-Friedman Universes
with a (four space-time dimensional) positive cosmological constant Λ, whose
value saturate the Newtonian upper limit obtained from galactic dynamics.
In order of magnitude,

Λ ∼ 10−122M4
P (M4

P = 1019 GeV) . (12.1)

Although, as a classical (general relativistic) field theory, such a model is fairly
simple, from a quantum theory view point it appears to be the less understood
at present. The reason is simple: Since in cosmology [3] the radiation and
matter energy densities scale with inverse powers of the scale factor, a−4

and a−3 respectively, in a Universe with a positive cosmological constant Λ,
the vacuum energy density remains constant and positive, and eventually
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dominates the energy budget. The asymptotic (in time) Universe becomes a de
Sitter one, and in such a Universe the scale factor will increase exponentially,

a(t) = a0e
√

Λ
3 t . (12.2)

This in turn implies that the Universe will eventually enter an inflationary
phase again, and in fact it will accelerate eternally, since ä > 0, where the
overdot denotes derivative with respect to the Robertson-Walker cosmic time,
t, defined by:

ds2
RW = −dt2 + a2(t)ds2

spatial . (12.3)

In such de Sitter Universes there is unfortunately a cosmic horizon

δ ∝
∫ tEnd

t0

cdt

a(t)
<∞ , (12.4)

where tEnd indicates the end of time. For a closed Universe tEnd < ∞, but
for an open or flat Universe tEnd →∞. The Cosmic Microwave (CMB) data
of WMAP and other experiments at present indicate that our Universe is
spatially flat, and hence tEnd →∞.

The presence of a cosmic horizon implies that it is not possible to de-
fine pure state vectors of quantum asymptotic (in time) states. Therefore,
the entire concept of a well-defined and gauge invariant Scattering matrix S
breaks down in quantum field theories defined on such de Sitter space-time
backgrounds. For string theory this is bad news, because, by construction [4],
perturbative string theory is based on well-defined scattering amplitudes for
the various excitations, and hence on a well-defined S-matrix [5]. The accom-
modation of de Sitter space-times as consistent backgrounds is, therefore, a
challenge for string theory, and certainly one of the most important issues I
would like to discuss in this brief review.

A straightforward way out, would be quintessence-like scenarios for dark
energy [6], according to which the latter is due to a potential of a time depen-
dent scalar field, which has not yet reached its equilibrium point. If then the
asymptotic value of the dark energy vanishes in such a way that there is no
cosmic horizon, then the model could be accommodated within string-inspired
effective field theories, given that an asymptotic S-matrix could be defined in
such a case.

However, this does not mean that de Sitter Universes per se cannot be ac-
commodated somehow into a (possibly non perturbative) string theory frame-
work. Their anti-de-Sitter (AdS, negative cosmological constant) counterparts
certainly do, and in fact there have been important development towards a
holographic property of quantum field theories in such Universes, due to the
celebrated Maldacena conjecture [7], concerning quantum properties of (su-
persymmetric) conformal field theories on the boundary of AdS space-time.
As we shall discuss in the next section, similar conjectures [8] may characterize
their de Sitter counterparts, and this could be a way forward to accommodate
such a space-time into string theory.
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Finally, a more straightforward (perturbative) approach to discuss de Sit-
ter and inflationary models in string theories, would be to use the so-called
non-critical (or Liouville) string framework [9], dealing with a mathemati-
cally consistent way of discussing strings propagating in non-conformal back-
grounds, of which de Sitter space-time is one example. This theory, however,
at least as far as computation of the pertinent correlation functions are con-
cerned, has not been developed to the same level of mathematical under-
standing as the critical strings. A crucial ingredient in this approach is the
identification of the Liouville mode with the target time [10], which allows for
some non-conformal backgrounds in string theory, including de Sitter space-
times and accelerated Universes, to be accommodated in a mathematically
consistent manner. We shall cover this approach in some detail in Sect. 12.4.

We should stress at this point, that the above considerations, regarding
S-matrix amplitudes in de Sitter Universes, refer to pure perturbative string
theories. In the modern approach to strings, where membrane (D-brane) struc-
tures [11] also appear as mathematically consistent entities, the presence of a
dark energy on the brane is unavoidable, unless extreme conditions of (a hight
number of) unbroken supersymmetries and a static nature of brane worlds are
imposed. However, in brane cosmology one needs moving branes, in order to
obtain a cosmological space-time [12], and in this case, target space-time su-
persymmetry breaks down, due to the brane motion, resulting in non-trivial
vacuum energy contributions on the brane (see Maartens’ contribution in this
volume). If one accommodates brane models within a string theory frame-
work, then, the important question arises as to how one can formulate the
string theory of the excitations on the brane in the presence of such vacuum
energy contributions.

The structure of the article will be the following: in Sect. 12.2, I will deal
with mathematical properties of de Sitter space-times: after reviewing briefly
basic features of this geometry, I will describe modern approaches to the issue
of placing a quantum field theory in de Sitter space-times, by discussing briefly
a holographic conjecture, put forward by Strominger [8], according to which a
quantum field theory on the single boundary of de Sitter space can be related
to a classical theory in the bulk, in a way not dissimilar to the celebrated
Maldacena conjecture [7] for anti-de Sitter spaces (negative cosmological con-
stant space-times). In Sect. 12.3, I will discuss the issue of cosmic horizons in
perturbative string theory, and give further arguments that consistent pertur-
bative strings cannot be characterized by such horizons. In Sect. 12.4, I will
discuss quintessence scenarios in strings, where the dilaton behaves as the
quintessence field, responsible for the current acceleration of the Universe. I
will discuss two opposite examples, a pre Big-Bang scenario [13], in which the
string coupling increases at late times, with string loop corrections playing a
dominant rôle, and another scenario [10, 14], in which the string coupling be-
comes more and more perturbative as the time passes, leading asymptotically
to a vanishing dark energy, in such a way that S-matrix states can be defined.
In this second scenario the current-era acceleration parameter turns out to
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be proportional to the square of the string coupling, which at present enjoys
perturbative values compatible with particle physics phenomenology. I will
briefly discuss predictions of such models in the context of recent data, but
also unresolved problems. I will not discuss the issue of dark energy in brane
cosmologies in this article, as this is a topic covered by other contributions
in this volume. Conclusions and directions for future research in the issue of
Dark Energy in Strings will be presented in Sect. 12.5.

12.2 De Sitter (dS) Universes from a Modern
Perspective

In this section I shall give a very brief overview of the most important prop-
erties of de Sitter space, relevant for the purposes of this lecture. For more
details the reader is referred to [8], and references therein, where a concise
exposition of the most important properties of classical and quantum theories
of de Sitter space is given.

12.2.1 Classical Properties

The classical Geometrical picture of a de Sitter space-time is that of a
single-sheet hyperboloid, depicted in Fig. 12.1. This hypersurface can be con-
structed from a flat (d+1)-dimensional Minkowski space-time, with coordi-
nates (X0, X i) , i = 1, . . . d, by means of the equation:

− (X0)2 + (X1)2 + . . . + (Xd)2 =  2 , (12.5)

where the parameter  has units of length, and is called the de Sitter radius.

D−1 Extremal Volume

X 

0

Fig. 12.1. A de Sitter space is a single-sheet hyperboloid, obtained from a (d+1)-
dimensional Minkowski space-time by an appropriate embedding of the hypersurface
−(X0)2 + (X1)2 + . . . + (Xd)2 = �2, where � is the de Sitter radius
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The classical Einstein equations, which yield as a solution this space-time,
involve a positive cosmological constant

Rμν −
1
2
gμνR + Λgμν = 0 , Λ =

(d− 2)(d− 1)
2 2

(12.6)

There are various coordinates one can use for the description of such space-
times, whose detailed description is given in [8]. The most useful one, which
is also most relevant for our purposes, and also helps us to understand more
clearly the causal properties of the de Sitter space-time, is the conformal
coordinate system, (T, θi), i = 1, . . . d, in terms of which the line element reads:

ds2 =
1

cos2T
(
−dT 2 + dΩ2

d−1

)
, (12.7)

where Ω is the usual angular part, expressed in terms of θi’s.
In terms of these coordinates, one arrives easily at the Penrose diagram for

the de Sitter space, depicted in Fig. 12.2(a), which contains all the information
about the causal structure.

A peculiar feature of this space, but quite important for the development
of a consistent quantum gravity theory, is the fact that no single observer can
access the entire space-time (see Figs. 12.2(b),(c)). As we see from the figure,
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Fig. 12.2. (a) The Penrose diagram for the de Sitter space, constructed by means
of conformal coordinates. Horizontal slices represent the extremal volume Sd−1 (cf.
dashed line in Fig. 12.1), whilst every point in the interior represents a Sd−2. The
vertical slices marked as north and south pole are time-like surfaces. The I+ (I−)
surfaces correspond to the future (past) infinity, and they are the surfaces where
all the null geodesics (ds2 = 0) originate and terminate. The diagonal dotted lines
represent the past and future horizons of an observer at the south pole. Due to
the existence of an horizon in this geometry, a light that starts at, say, the north
pole at I− will reach the south pole by the time it reaches I+ infinitely far in the
future. (b) A classical observer sitting at the south pole will never be able to observe
anything past the dotted line that stretches from the north pole at I− to the south
pole at I+ (causal past region O−). (c) Similarly, the south pole observer will only
be able to send a message only to the causal future region O+
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the causal past and future regions of an observer sitting, say, at the south
pole will only be the portions O− and O+, respectively. Their intersection
(called causal diamond) is the only region of the de Sitter space that is fully
accessible to an observer at the south pole.

12.2.2 Quantum Field Theory
on dS: Thermodynamical Properties

Due to the aforementioned fact of inaccessibility of the entire region of dS
space to a classical observer, a consistent formulation of quantum field the-
ory in such space-times is still an open issue, and certainly it is expected to
be rather different from the corresponding one in Minkowskian space-times,
where such inaccessibility problems are absent. Essentially, the presence of
an horizon will cause problems in defining appropriately asymptotic quan-
tum states, and hence a scattering matrix, as we discussed in the intro-
duction (cf. (12.4)) for the case of cosmological de Sitter space-times. This
issue is still wide open, and below we outline some more consequences of
this fact.

The situation somewhat resembles that of a Black Hole (BH). In that
problem, there is an horizon, for an asymptotic observer, who lies far away
from it and makes his/her measurements locally. The entropy S associated
with an event horizon in the BH case is given by the Bekenstein-Hawking
area law [15, 16]

S =
1

4GN
A , (12.8)

where GN is the gravitational (Newton) constant, and A is the area of the
horizon. This is a macroscopic formula, which essentially describes how prop-
erties of event horizons in General Relativity change as their parameters (area,
in this case) are varied.

The quantum BH Hawking radiate, and from this type of particle creation
one comes to the conclusion that there is a temperature TH characterizing
the exterior space-time (‘Hawking’ temperature), measured at infinity. For
the case of a Schwarzschild BH

TH =
�

8πM
, (12.9)

where M is the mass (energy) of the BH. In the BH case this temperature is
found by integrating the thermodynamic relation dSBH/dM = 1/TH .

From a quantum field theory point of view, we can understand such for-
mulae from the fact that they describe some effective “loss” of information,
associated with modes that go beyond the horizon, and hence are lost for ever
for the classical asymptotic observer.

Indeed, if one considers the exterior portion of space-time of the BH as
an open system, and the interior as constituting the “environment”, with
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which the physical world interacts, then the Bekenstein-area law formula may
be derived simply even in flat Minkowski space-times with a boundary of
area A. For instance, Srednicki [17] has demonstrated that by tracing the
density matrix of a massless scalar field (taken as a toy, but illustrative,
example) over degrees of freedom residing inside an imaginary sphere, em-
bedded in a flat Minkowski space-time, the result leads to an entropy for
the scalar field which is proportional to the area, and not the volume of the
sphere.

In view of this analogy, one would therefore expect that, in all cases where
there is a region in space-time inaccessible to an asymptotic observer of a
quantum field theory on such geometries, there should be an entropy asso-
ciated with the area of the region. This should also be expected in the dS
case, in view of the existence of a de Sitter horizon. If one postulates some
thermodynamic properties associated with the entropy, one arrives also at an
effective temperature concept.

The deep issue in the black hole case is to understand the precise coefficient
1/4GN in (12.8), in other words develop a sufficiently correct quantum theory
for such space-times, in which it will be possible to count the microstates of
the BH exactly. If the latter are associated to a Von Neumann entropy, SV N =
−kBTrρlnρ, where ρ is the density matrix of the system under consideration
(the quantum BH in our case), and the Tr is taken over all microstates, then
one should show that SV N = S given by (12.8).

At present this is one of the most important issues in theoretical physics.
A precise counting of microstates, however, leading to a relation of the form
(12.8) has become possible for certain highly supersymmetric black hole
backgrounds in string theory, saturating the so-called Bogomolnyi-Prasad-
Sommerfield (BPS) bound [18]. It is, though, still unproven for the general
case of non supersymmetric black holes, which are the likely types to be en-
countered in our physical world.

We now come to the dS case. Indeed, as one would expect from the above
generic arguments, there should be an entropy associated with the horizon.
In fact it is, and there is also a temperature (‘Gibbons-Hawking tempera-
ture’) [19], in complete analogy with the BH case. In fact, the temperature is
given in terms of the de Sitter radius by:

TGH =
1

2π 
(12.10)

and the entropy, associated with the de Sitter horizon of area A, is given
exactly by the formula (12.8).

These properties can be proven by considering a quantum field on the dS
background and evaluating its Green functions. Such an analysis shows that,
in the case of massive quantum fields, an observer, moving along a time-like
geodesic of dS space, observes a thermal bath of particles, when the massive
field is in its vacuum state |0 >. It turns out that the correct type of Green
functions to be used in this case are the thermal ones. For details we refer
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the reader to the lectures by Strominger [8], and references therein. Such an
analysis allows also for the computation of the effective temperature the dS
space is associated with.

The entropy of the de Sitter space SdS, then, is found following the argu-
ment suggested by Gibbons and Hawking [19], according to which

dSdS
d(−EdS)

=
1

TGH
, (12.11)

where EdS is the energy of the dS space. Notice the minus sign in front of EdS .
This stems from the fact that what we call energy in dS space is not as simple
as the mass of the BH case. To understand qualitatively what might happen
in the dS case, we should first start from the principle outlined above, that
the entropy of the space is associated with “stuff” behind the horizon. We do
not, at present, have any idea what the “microstates” of the dS vacuum are,
but let us suppose for the sake of the argument, that an entropy is associated
with them (this assumption is probably correct).

In general relativity energy on a surface is defined as an integral of a to-
tal derivative, which therefore reduces to a surface integral on the boundary
of the surface, and hence vanishes for a closed surface. Because of this van-
ishing result, if we consider a closed surface on de Sitter space, and we put,
say, positive energy on the south pole, then there must be necessarily some
negative energy at the north pole to compensate, and yield a zero result.
One can see this explicitly in the case of a Schwarzschild-de Sitter space-
time, where the singularity at the north pole, behind the dS horizon, carries
negative energy [8]. From the BH analogy, it is therefore more sensible to
vary with respect to this negative energy, and this explains the relative mi-
nus sign in (12.11) yielding the correct expression for the area law in the dS
case.

The important point to notice, however, is that, despite the formal sim-
ilarity of the dS with the BH, in the former case no one understands, at
present, the precise microscopic origin of the entropy and temperature. It is
not clear what the microstates behind the dS horizon are. Certainly they con-
stitute an “environment” with which the quantum field theory on dS space
interacts.

This question acquires much bigger importance in cosmologies with a pos-
itive cosmological constant, which are currently favoured by the astrophysical
data [1, 2]. Indeed in such cases, the asymptotic (in time) Universe will en-
ter a pure de-Sitter-space phase, since all the matter energy density will be
diluted, scaling with the scale factor as a−3, thereby leaving us only with the
constant vacuum energy contribution Λ. As discussed in the beginning of the
lecture, the cosmological horizon will be given by (12.4), and in this case the
dS radius  , in terms of which the entropy and temperature are expressed, is
associated with Λ by (12.6), essentially its square root.
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12.2.3 Lack of Scattering Matrix and Intrinsic
CPT Violation in dS?

The important question, therefore, from a quantum field theory viewpoint
on such cosmologies and in general dS-like space-times, concerns the kind
of quantum field theories one can define consistently in such a situation. In
this respect, the situation is dual to the BH case in the following sense: in a
BH, there is an horizon which defines a space-time boundary for an asymptotic
observer who lies far away from it. In a full quantum theory the BH evaporates
due to Hawking radiation. Although the above thermodynamics arguments are
valid for large semi-classical BH, one expects the Hawking evaporation process
to continue until the BH acquires a size comparable to the characteristic scale
of quantum gravity (QG), the Planck length  P = 1/MP , with MP ∼ 1019

GeV. Such microscopic BH may either evaporate completely, leaving behind a
naked singularity, or, better -thus satisfying the cosmic censorship hypothesis,
according to which there are no unshielded space-time singularities in the
physical world - disappear in a space-time “foam”, namely in a QG ground
state, consisting of dynamical “flashing on and off” microscopic BH. In such
a case, an initially pure quantum state will in principle be observed as mixed
by the asymptotic observer, given that “part of the state quantum numbers”
will be kept inside the foamy black holes (“effective information loss”), and
hence these will constitute degrees of freedom inaccessible to the observer.

Barring the important concept of holographic properties, which we shall
come to later on, which may indeed characterize such singular space-times
in QG, a situation like this will imply an effective non-unitary evolution of
quantum states of matter in such backgrounds, and hence gravitational deco-
herence.

A similar situation will characterize the dS space, which is dual to the BH
analogue, in the sense that the observer is inside the (cosmological) horizon,
in contrast to the BH where he/she was lying outside. However the situation
concerning the inability to define asymptotically pure state vectors for the
quantum state of matter fields remains in this case.

The lack of a proper definition of pure “out” state asymptotic vectors
in both situations, implies that a gauge invariant scattering matrix is also ill
defined in the dS case. By a theorem due to Wald then [20], one cannot define
in such quantum field theories a quantum mechanical CPT operator. This
leads to quantum decoherence of matter propagating in such de Sitter space-
times. For more details I refer the interested reader to [21], where possible
phenomenological consequences of such a decoherence are discussed in detail.

For the purposes of this lecture, the reader should bear in mind that CPT
invariant quantum field theories is the cornerstone of modern particle physics
phenomenology. Hence, if the issue of CPT symmetry needs to be modified or
violated in a dS space for the above reasons, then this brings up immediately
the question as to how one can formulate consistent particle physics models
in such space-times.
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12.2.4 Holographic Properties of dS? Towards
a Quantum Graviy Theory

A final, but important aspect, that might characterize a quantum theory in
de Sitter space-times, is the aforementioned property of holography. If this
happens, then the above-mentioned information loss paradox will not occur,
since in that case all the information that would otherwise be lost behind the
horizon surface would somehow be reflected back to (or tunnel through) the
surface, and thus could be accessible to an outside observer. Thus, a mathe-
matically consistent quantum mechanical picture of gravity in the presence of
space-time boundaries could be in place.

I must stress, at this point, an important issue for which there is often
confusion in the literature. If quantum gravity turns out to lead to open-
system quantum mechanics for matter theories, this is not necessarily a
mathematical inconsistency. It simply means that there is information car-
ried out by the quantum-gravitational degrees of freedom, which however
may not be easy to retrieve in a perturbative treatment. Of course, even in
such situations, the complete system, “gravity plus matter”, is mathemati-
cally a closed quantum system. On the other hand, if holography is valid,
then one simply does not have to worry about any effective loss of informa-
tion due to the space-time boundary, and hence the situation becomes much
cleaner.

Holographic properties of anti-de-Sitter (AdS) spaces (negative cosmolog-
ical constant) are encoded in the celebrated Maldacena conjecture [7], accord-
ing to which the quantum correlators of a conformal quantum field theory on
the boundary of the AdS space can be evaluated by means of classical grav-
ity in the bulk of this space. This conjecture, known with the abbreviation
AdS/CFT correspondence, has been verified to a number of highly super-
symmetric backgrounds in string theory, but of course it may not be valid in
(realistic) non conformal, non supersymmetric cases. The issue for such cases
is still open.

A similar conjecture in de Sitter space-times has been put forward by Stro-
minger [8]. The conjecture, which is not proven at present, can be formulated
as follows:

Consider an operator φ(xi) of quantum gravity in a de Sitter space, in-
serted at points xi on the hypersurfaces I− or I+. The dS/CFT conjecture
states that correlation functions of this operator at the points xi can be gen-
erated by an appropriate Euclidean conformal field theory

〈φ(x1) . . . φ(xi)〉dSd+1 ←→ 〈Oφ(x1) . . .Oφ(xi)〉Sd , (12.12)

where Oφ(x) is an operator of the CFT associated with the operator φ.
For the simple, but quite instructive case, of a three dimensional dS3 space,

a proof of this correspondence has been given in [8], making appropriate use
of properties of the asymptotic symmetry group of gravity for dS3. I refer the
interested reader to that work, and references therein, for more details.
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Before closing this section, I would like to stress that the dS/CFT con-
jecture may not be valid in realistic cosmologies, in which the quantum field
theories of relevance are certainly not conformal. If, however, this conjecture is
valid, then this is a very big step towards a CPT invariant, non-perturbative,
construction of a quantum theory of gravity.

The holographic principle [22] will basically allow for any possible infor-
mation loss associated with the presence of the cosmological horizon to decay
with the cosmic time, in such a way that an asymptotic observer will not even-
tually loose any information. This will allow for a consistent CPT operator to
be defined, then, according to the above-mentioned theorem of Wald [20].

If true for the dS case, one expects a similar holographic property to be
valid for the BH case as well. In fact recently, Hawking argued [23] this to be
the case in a BH quantum theory of gravity, but in my opinion his arguments
are not supported by any rigorous calculation. Hawking’s argument is based
on the fact that any consistent theory of gravity should involve an appropriate
sum over topologies, including the Minkowskian one (trivial). In Hawking’s
argument, then, the Euclidean path integrals over the non-trivial topologies,
that would give non-unitary contributions, and hence information loss, lead
to expressions in scattering amplitudes that decay exponentially with time,
thereby leaving only the trivial topology contributions, which are unitary. As
we said, however, there is no rigorous computation involved to support this
argument, at least at present, not withstanding the fact that the Euclidean
formalism seems crucial to the result (although, arguably we know of no other
way of performing a proper quantum gravity path integral). Hence, the issue of
unitarity in effective low-energy theories of quantum gravity is still wide open
in my opinion, and constitutes a challenge for both theory and phenomenology
of quantum gravity [21].

12.3 No Horizons in Perturbative (Critical)
String Theory

As discussed above, if holography is valid, there should, in principle, be no
issue regarding string theory, and hence CPT would be a good symmetry of
the theory, as seems desirable from a modern M-theory point of view [24].

If, however, holography is not valid for realistic non-supersymmetric, non-
conformal theories, then such a situation is most problematic in string theory,
which, as mentioned in the beginning, at least in its perturbative treatment
is based on a formalism with well-defined scattering amplitudes [5].

Apart from the scattering-matrix and CPT-based issues, there are other
arguments that exclude the existence of horizons in perturbative string the-
ory [25]. These arguments derive from considerations of the shape of the po-
tentials arising from supersymmetry breaking scenarios in perturbative string
theory, whose coupling (before compactification) is defined by the exponential
of the dilaton field gs = eΦ.
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The situation becomes cleanest if we consider, for simplicity and definite-
ness, the case of a single scalar, canonically normalized, field φ, playing the
rôle of the quintessence field in a Robertson-Walker space-time with scale fac-
tor a(t), with t the cosmic time. The field depends only on time, since we
assume homogeneity. Such a field could be the dilaton, or other modulus field
from the string multiplet [4].

Consider the lowest order Friedmann equation, as well as the equation of
motion of the field φ in D + 1 dimensions (the overdot denotes cosmic-time
derivative), which are (formally) derived from the σ-model β-functions of a
perturbative string theory

H2 ≡
(

ȧ

a

)2

=
2κ2

D(D − 1)
E , E =

(φ̇)2

2
+ V (φ) ,

φ̈ + DHφ̇ + V ′(φ) = 0 , (12.13)

with E the total energy of the scalar field, V its potential, and a prime indicat-
ing variations with respect to the field φ. We obtain the following expressions
for the scale factor a(t) and the cosmic horizon δ:

a(t) = exp

(∫
dφ

√
E

D(D − 1)(E − V )

)
,

δ =
∫ ∞ dt

a
=
∫

dφ
1
aφ̇

=
∫

dφ
1

a
√

2(E − V )
. (12.14)

The condition for the existence of a cosmic horizon is of course the convergence
of the integral on the right-hand-side of the expression for δ. This depends on
the asymptotic behaviour of the potential V as compared to the total energy
E. This behaviour can be studied in a generic perturbative string theory, based
on the form of low energy potentials of possible quintessence candidates, such
as dilaton, moduli etc. Because realistic string theories involve at a certain
stage supersymmetry in target space, which is broken as we go down to the
four dimensional world after compactification, or as we lower the energy from
the string (Planck) scale, such arguments depend on the form of the potential,
dictated by supersymmetry breaking considerations. The form is such that
δ → ∞ in (12.14), and hence there are no horizons. In this lecture I will
not give further details [25] on the form of the supersymmetry breaking string
theory potentials, because the above-mentioned CPT/scattering-matrix based
argument is more general, and encompasses such cases, and it is the most
fundamental reason for the incompatibility of perturbative strings with space-
time backgrounds with horizons.

I would like to stress, however, that these arguments refer to the traditional
critical strings, without branes, where a low-energy field theory derives from
conformal invariance conditions. From this latter point of view it is straightfor-
ward to understand the problem of incorporating cosmologies with horizons,
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such as inflation or in general de Sitter space-times, in perturbative strings.
A tree-world-sheet σ-model on, say, graviton backgrounds, whose conformal
invariance conditions would normally yield the target-space geometry, reads
to order α′ (α′ denotes henceforth the Regge slope) [4]:

βμν = Rμν + . . . (12.15)

where the . . . indicate contributions from other background fields, such as
dilaton etc..

Ignoring the other fields, conformal invariance of the pertrurbative stringy
σ-model would require a Ricci flat Rμν = 0 background, which is not the case
of a dS space, for which (cf. (12.6))

Rμν = Λgμν . (12.16)

To generate such corrections in the early days of string theory, Fischler and
Susskind [26] had to invoke renormalization group corrections to the above-
tree level β-function (12.15), induced by higher string loops, i.e. higher topolo-
gies of the σ-model world sheet. Tadpoles J of dilatons at one string loop
order (torus topologies) yielded a dS (or AdS depending on the sign of J )
type contribution to the graviton β-function, J gμν . The basic idea behind
this approach is to accept that world-sheet surfaces of higher topologies with
handles whose size is smaller than the short-distance cutoff of the world-sheet
theory, will not be ‘seen’ as higher- topologies but appear ‘effectively’ as tree
level ones. They will, therefore, lead to loop corrections to the traditional
tree-level β-functions of the various background fields, which cannot be dis-
covered at tree level. Conformal invariance implies of course that tori with
such small handles are equivalent to world-sheet spheres but with a long thin
tube connected to them. For more details on this I refer the interested reader
in my lectures in the First Aegean School [3].

Nevertheless, this approach does not solve the problem, despite its formal
simplicity and elegance. The reason is two fold: first, string-loop perturba-
tion theory is not Borel-resummable, and as such, the expansion in powers of
genus of closed Riemann surfaces with handles (and holes if open strings are
included), does not converge mathematically, hence it cannot give sensible an-
swers for strong or intermediate string couplings. It is indeed, expected, that
the dark energy is a property of a full theory of quantum gravity, and as such,
an explanation of it should not be restricted only to perturbative string the-
ory. Second, as already mentioned several times above, a string propagating
in a space-time with a loop-induced cosmological constant will not be char-
acterized by a well-defined scattering matrix, which by definition is a ‘must’
for perturbative string theory.

Thus, the issue remains as to what kind of dark energy one is likely to
encounter in string theory. In the next section I will discuss stringy scenarios
for time-dependent dark energy, relaxing to zero asymptotically in time, in an
attempt to accommodate well-defined string scattering amplitudes.



346 N. Mavromatos

12.4 Dilaton Quintessence in String Theory

In this section we shall be concerned with the propagation of strings in ho-
mogeneous cosmological backgrounds, consisting of dilaton and graviton fields
that depend only on the target time. In particular, we shall discuss Robertson-
Walker (RW) homogeneous cosmologies. The incorporation of time-dependent
backgrounds in string theory is not a straightforward issue: the basic problem
is the proper implementation of the conformal invariance conditions of the
pertinent σ-model, describing perturbative stringy excitations [4]. The prob-
lem arises because such backgrounds are not vacuum solutions of Einstein’s
equations, and as such they require non-trivial “matter” or “dark-energy”
contributions to the stress tensor. It then becomes clear that such a situation
cannot involve simply the propagation of strings in gravitational backgrounds
alone. Extra fields from the (gravitational) string multiplet, such as the dila-
ton, should be considered in order to ensure that the appropriate conformal
invariance conditions are satisfied.

In this section we shall discuss several cases of such backgrounds: we shall
start from the simplest case of a linear (in time) dilaton background [27],
satisfying the appropriate conformal invariance conditions, which are known
to be equivalent to on-shell dynamical equations of motion of a low-energy
effective action [4]. Next we shall proceed to discuss more complicated cosmo-
logical (time-dependent only) dilaton and graviton backgrounds, associated
with pre-Big-Bang scenarios for the Universe [13], characterized by dilaton-
driven acceleration at the current epoch. We shall consider backgrounds that
still satisfy on-shell target-space dynamical equations. Finally, in the last part
of the lecture, we shall discuss off equilibrium situations [10, 36], arising from
cosmically catastrophic events in string cosmologies, such as brane world col-
lisions, which are responsible for deviations from conformal invariance of the
associated stringy σ-models. In this case, Liouville dressing [9] is required in
order to restore conformal invariance. Upon the identification of the Liouville
mode with the target time [10], which as we shall discuss below is forced by
the dynamics, this procedure results to dynamical-dark-energy scenarios, in
which the corresponding dilaton-driven acceleration of the universe dimin-
ishes with the cosmic time in such a way that, asymptotically in time, both
the Universe acceleration and the (dilaton) dark energy contributions decay
to zero.

12.4.1 An Expanding Universe in String Theory

One of the simplest, and most natural quintessence fields, to generate a dy-
namical dark energy component for the string Universe is the dilaton Φ,
a scalar field that appears in the basic gravitational multiplet of any (su-
per)string theory [4]. Dilaton cosmology has been originated by Antoniadis,
Bachas, Ellis and Nanopoulos in [27], where the basic steps for a correct for-
mulation of an expanding Robertson-Walker Universe in string theory have
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been taken, consistently with conformal invariance conditions1. The crucial
rôle of a time dependent dilaton field had been emphasized.

In [27] a time-dependent dilaton background, with a linear dependence on
time in the so-called σ-model frame was assumed. Such backgrounds, even
when the σ-model metric is flat, lead to exact solutions (to all orders in
α′) of the conformal invariance conditions of the pertinent stringy σ-model,
and so are acceptable solutions from a perturbative viewpoint. It was ar-
gued in [27] that such backgrounds describe linearly-expanding Robertson-
Walker Universes, which were shown to be exact conformal-invariant solu-
tions, corresponding to Wess-Zumino models on appropriate group mani-
folds.

The pertinent σ-model action in a cosmological (time-dependent only)
background of graviton G(t), antisymmetric tensor B(t) and dilaton Φ(t) fields
reads [4]:

Sσ =
1

4πα′

∫
Σ

d2ξ[
√
−γGμν∂αX

μ∂αXν+iεαβBμν∂αX
μ∂βX

ν+α′√−γR(2)Φ] ,

(12.17)
where Σ denotes the world-sheet, with metric γ and the topology of a sphere, α
are world-sheet indices, and μ, ν are target space-time indices. The important
point of [27] was the rôle of target time t as a specific dilaton background,
linear in that coordinate, of the form

Φ = const− 1
2
Q t , (12.18)

where Q is a constant and Q2 > 0 is the σ-model central-charge deficit,
allowing this supercritical string theory to be formulated in some number
of dimensions different from the critical number. Consistency of the under-
lying world-sheet conformal field theory, as well as modular invariance of
the string scattering amplitudes, required discrete values of Q2, when ex-
pressed in units of the string length Ms [27]. This was the first example of
a non-critical string cosmology, with the spatial target-space coordinates X i,
i = 1, . . .D − 1, playing the rôle of σ-model fields. This non-critical string
was not conformal invariant, and hence required Liouville dressing [9]. The
Liouville field had time-like signature in target space, since the central charge
deficit Q2 > 0 in the model of [27], and its zero mode played the rôle of target
time.

As a result of the non-trivial dilaton field, the Einstein term in the effective
D-dimensional low-energy field theory action is conformally rescaled by e−2Φ.
This requires a redefinition of the σ-model frame space-time metric Gμν to
the ‘physical’ Einstein metric gEμν :

1 In fact that work was actually the first work on Liouville supercritical strings [9],
with the Liouville mode identified with the target time, although this had not
been recognized in the original work, but later [10].
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gEμν = e−
4Φ

D−2 Gμν . (12.19)

Target time must also be rescaled, so that the metric acquires the standard
Robertson-Walker (RW) form in the normalized Einstein frame for the effec-
tive action:

ds2
E = −dt2E + a2

E(tE)
(
dr2 + r2dΩ2

)
, (12.20)

where we show the example of a spatially-flat RW metric for definiteness, and
aE(tE) is an appropriate scale factor, which is a function of tE alone in the
homogeneous cosmological backgrounds we assume throughout.

The Einstein-frame time is related to the time in the σ-model frame [27] by:

dtE = e−2Φ/(D−2)dt → tE =
∫ t

e−2Φ(t′)/(D−2)dt′ . (12.21)

The linear dilaton background (12.18) yields the following relation between
the Einstein and σ-model frame times:

tE = c1 +
D − 2

Q
e

Q
D−2 t , (12.22)

where c1 is a constant, which can be set to zero by an appropriate shift of
the origin of time. Thus, a dilaton background (12.18) that is linear in the σ-
model time scales logarithmically with the Einstein time (Robertson-Walker
cosmic time) tE :

Φ(tE) = const.− D − 2
2

ln(
Q

D − 2
tE) . (12.23)

In this regime, the string coupling [4]:

gs = exp (Φ(t)) (12.24)

varies with the cosmic time tE as g2
s(tE) ≡ e2Φ ∝ 1

tD−2
E

, thereby implying a
vanishing effective string coupling asymptotically in cosmic time. In the linear
dilaton background of [27], the asymptotic space-time metric in the Einstein
frame reads:

ds2 = −dt2E + a2
0t

2
E

(
dr2 + r2dΩ2

)
, (12.25)

where a0 is a constant. Clearly, there is no acceleration in the expansion of
the Universe (12.25).

The effective low-energy action on the four-dimensional brane world for
the gravitational multiplet of the string in the Einstein frame reads [27]:

Sbrane
eff =

∫
d4x
√
−g{R− 2(∂μΦ)2 − 1

2
e4Φ(∂μb)2 −

2
3
e2Φδc} , (12.26)

where b is the four-dimensional axion field associated with a four-dimensional
representation of the antisymmetric tensor, and δc = Cint − c∗, where Cint
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is the central charge of the conformal world-sheet theory corresponding to
the transverse (internal) string dimensions, and c∗ = 22(6) is the critical
value of this internal central charge of the (super)string theory for flat four-
dimensional space-times. The linear dilaton configuration (12.18) corresponds,
in this language, to a background charge Q of the conformal theory, which
contributes a term −3Q2 (in our normalization) to the total central charge.
The latter includes the contributions from the four uncompactified dimensions
of our world. In the case of a flat four-dimensional Minkowski space-time, one
has Ctotal = 4− 3Q2 + Cint = 4− 3Q2 + c∗ + δc, which should equal 26 (10).
This implies that Cint = 22 + 3Q2 (6 + 3Q2) for bosonic (supersymmetric)
strings.

An important result in [27] was the discovery of an exact conformal
field theory corresponding to the dilaton background (12.23) and a constant-
curvature (Milne) static metric in the σ-model frame (or, equivalently, a
linearly-expanding Robertson-Walker Universe in the Einstein frame). The
conformal field theory corresponds to a Wess-Zumino-Witten two-dimensional
world-sheet model on a group manifold O(3) with appropriate constant
curvature, whose coordinates correspond to the spatial components of the
four-dimensional metric and antisymmetric tensor fields, together with a free
world-sheet field corresponding to the target time coordinate. The total cen-
tral charge in this more general case reads Ctotal = 4 − 3Q2 − 6

k+2 + Cint,
where k is a positive integer corresponding to the level of the Kac-Moody
algebra associated with the WZW model on the group manifold. The value
of Q is chosen in such a way that the overall central charge to be c = 26 and
the theory is conformally invariant. Since such unitary conformal field theo-
ries have discrete values of their central charges, which accumulate to integers
or half-integers from below, it follows that the values of the central charge
deficit δc are discrete and finite in number. From a physical point of view,
this implies that the linear-dilaton Universe may either stay in such a state
for ever, for a given δc, or tunnel between the various discrete levels before
relaxing to a critical δc = 0 theory. It was argued in [27] that, due to the
above-mentioned finiteness of the set of allowed discrete values of the central
charge deficit δc, the Universe could reach flat four-dimensional Minkowski
space-time, and thus exit from the expanding phase, after a finite number of
phase transitions.

The analysis in [27] also showed that there are tachyonic mass shifts of
order −Q2 in the bosonic string excitations, but not in the fermionic ones.
This implies the appearance of tachyonic instabilities and the breaking of
target-space supersymmetry in such backgrounds, as far as the excitation
spectrum is concerned. The instabilities could trigger the cosmological phase
transitions, since they correspond to relevant renormalization group world-
sheet operators, and hence initiate the flow of the internal unitary confor-
mal field theory towards minimization of its central charge, in accordance
with the Zamolodchikov c-theorem [28]. In semi-realistic cosmological mod-
els [14] such tachyons decouple from the spectrum relatively quickly. On the
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other hand, as a result of the form of the dilaton in the Einstein frame
(12.23), we observe that the dark-energy density for this (four-dimensional)
Universe, Λ ≡ e2Φδc, is relaxing to zero with a 1/t(D−2)

E dependence on
the Einstein-frame time for each of the equilibrium values of δc. There-
fore, the breaking of supersymmetry induced by the linear dilaton is only
an obstruction [29], rather than a spontaneous breaking, in the sense that it
appears only temporarily in the boson-fermion mass splittings between the
excitations, whilst the vacuum energy of the asymptotic equilibrium theory
vanishes.

12.4.2 Pre Big Bang Scenaria

After the work of [27], dilaton cosmology has been discussed in a plethora
of interesting works, most of them associated with the so-called ‘pre-Big-
Bang’ (pBB) cosmologies [13], suggested by Veneziano, and pursued further
by Gasperini, Veneziano and collaborators. For the interested reader, this type
of cosmology has been reviewed by the author in the First Aegean School [3].

The basic feature behind the approach, is the fact that the dilaton has such
time dependence in these models that, as the cosmic time elapses, the string
coupling gs = eΦ grows stronger at late stages of the Universe. The dilaton
potential in the pre Big-Bang approach, which may be generated by higher
string loop corrections, has the generic form depicted in Fig. 12.3 [13]. The
situation is opposite that of [27], where as we have seen the string coupling
becomes weaker with the cosmic time, and perturbative strings are sufficient
for a description of the Universe at late epochs.

I will not discuss in great detail the pBB theories, since there are excellent
reviews on the subject [13], where the interested reader is referred to for more
details. For our purposes here, I would like to emphasize the basic predictions

ΦV( )

0

0

Weak Coupling Strong Coupling 

Φ

Initial Φ Present
Φ = Φ 0

Fig. 12.3. The dilaton potential in the pre Big-Bang scenario of string cosmology.
The string coupling grows strong at late times, and hence current-era is described
by strongly-coupled strings, where higher string loop corrections matter
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of this model regarding the rôle of dilaton as a a quintessence field, responsible
for late-time acceleration of the string Universe.

The starting point is the string frame, low-energy, string-inspired effective
action with graviton and dilaton backgrounds [4], to lowest order in the α′

expansion, but including dilaton-dependent loop (and non-perturbative) cor-
rections, which are essential given that at late epochs the dilaton grows strong
in pBB scenarios. Such corrections are encoded in a few “form factors” [13]
ψ(Φ), Z(Φ), α(Φ), . . ., and in an effective dilaton potential V (Φ). The effective
action reads:

S = −M
2
s

2

∫
d4x

√
−g̃

[
e−ψ(Φ)R̃ + Z(Φ)

(
∇̃Φ

)2

+ 2
M2

s
V (Φ)

]

− 1
16π

∫
d4x

√
−g̃

α(Φ) F
2
μν + Γm(Φ, g̃,matter) , (12.27)

where we follow the conventions of [13].
The four dimensional action above is the result of compactification. It is

also assumed that the corresponding moduli have been frozen at the string
scale. In the approach of [13] it is assumed that the form factors ψ(Φ),
Z(Φ), α(Φ) approach a finite limit as Φ → +∞ while, in the same limit,
V → 0. The fields appearing in the matter action Γm are in general non-
minimally and non-universally coupled to the dilaton (also because of the
loop corrections).

In the Einstein frame the action (12.27) becomes

S = −M
2
P

2

∫
d4x
√−g

[
R− k(Φ)2

2 (∇Φ)2 + 2
M2

P
V̂ (Φ)

]

− 1
16π

∫
d4x

√−g
α(Φ) F 2

μν + Γm(Φ, c21gμνe
ψ,matter) , (12.28)

where
k2(Φ) = 3ψ′2 − 2eψZ , V̂ = c41e

2ψV . (12.29)

The pertinent equations of motion for the graviton field read (in units where
M2
P = (8πGN )−1 = 2):

6H2 = ρ + ρΦ , (12.30)
4Ḣ + 6H2 = −p− pΦ , (12.31)

while the dilaton equation is:

k2(Φ)
(
Φ̈ + 3HΦ̇

)
+ k(Φ) k′(Φ) Φ̇2 + V̂ ′(Φ) +

1
2

[ψ′(Φ)(ρ− 3p) + σ] = 0 .

(12.32)
In the above equations H = ȧ/a, a dot denotes differentiation with respect to
the Einstein cosmic time, and we have used the definitions:

ρΦ =
1
2
k2(Φ)Φ̇2 + V̂ (Φ) , pΦ =

1
2
k2(Φ)Φ̇2 − V̂ (Φ) . (12.33)
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After some manipulations the pertinent equations of motion, describing the
dynamics of the system, read (all the quantities refer to the Einstein frame):

2H2 k2 d2Φ

dχ2
+ k2

(
1
2
ρm +

1
3
ρr + V̂

)
dΦ

dχ
+ 2H2 k k′

(
dΦ

dχ

)2

+

2V̂ ′ + ψ′ρm + σ = 0 ,

H2

[
6− k2

2

(
dΦ

dχ

)2
]

= ρm + ρr + V̂ ,

σ ≡ − 1
c21

2√−g

δ(Γm + F 2
μν

α(Φ) − terms)

δΦ
= σm + σr ,

c21 ≡ limΦ→+∞e−ψ(Φ) , (12.34)

where χ = lna, with a the scale factor in units of the present day scale, and
the suffix r(m) stands for radiation (matter) components.

The matter evolution equation, on the other hand, can be split into the
various components (radiation (r), baryonic (b) and dark matter(d)):

dρr
dχ

+ 4ρr −
σr
2

dΦ

dχ
= 0 ,

dρb
dχ

+ 3ρb −
1
2

(ψ′ρb + σb)
dΦ

dχ
= 0

dρd
dχ

+ 3ρd −
1
2

(ψ′ρd + σd)
dΦ

dχ
= 0 , (12.35)

and for the dilaton energy density ρΦ one can obtain the equation

dρΦ
dχ

+ 6ρΦ − 6V̂ (Φ) +
1
2

(ψ′ρm + σ)
dΦ

dχ
= 0 . (12.36)

It is important to notice that one of the basic assumptions of the pBB scenarios
is that, as the dilaton Φ → +∞, there is a finite limit of the corresponding
form factors [13]

e−ψ(Φ) = c21 + b1e
−Φ +O(e−2Φ) , Z(Φ) = −c22 + b2e

−Φ +O(e−2Φ) ,

α(Φ)−1 = a−1
0 + b3e

−Φ +O(e−2Φ) . (12.37)

where ci,i = 1, 2 bi, i = 1, 2, 3 and a0 appropriate constants. Furthermore,
one assumes that the effective dilaton potential originates purely from non
perturbative effects, and thus has the form V̂ = V0e

−Φ+O(e−2Φ), tending to
0 as Φ→ +∞.

It remains to be seen whether the above are true in a complete string
theory model, where (non-perturbative) summation over world-sheet genera is
not understood at present. This is one of the reasons why, personally, I would
prefer to use string models with weak string couplings at late eras, where



12 The Issue of Dark Energy in String Theory 353

perturbation theory is applicable and thus reliable predictions can be made.
We shall consider such cases in the next chapter, however the pertinent string
theories we shall employ are non-critical, as resulting from non equilibrium
situations in the Early stages of the Universe.

The analysis of [13], based on (12.34), (12.35) and (12.36), leads to pre-
dictions regarding the behaviour of the various cosmological parameters of
the pBB dilaton cosmology. Under various approximations and assumptions,
which I will not go through, but I would stress that they are due to the fact
that the various form factors and the dilaton couplings to matter are not
known in this approach due to the (uncontrolled) loop corrections, one can
solve the above equations to obtain the asymptotic evolution of the Hubble
factor and of the dominant energy density in this approach,

H ∼ a−3/(2+q) , ρ ∼ a−6/(2+q) . (12.38)

where q = O(1) = σd/ρd is related to dark matter components, assumed
dominant asymptotically, and is expressed [13] in terms of the various en-
ergy densities in the model q = 2 ΩV −Ωk

1+Ωk−ΩV
. We have defined Ωi = ρi/6H2,

with the suffix k denoting terms pertaining to the form-factor-k(Φ) (12.29)
contributions to the vacuum energy density and the suffix V the dilaton po-
tential contributions to it, ρΦ = ρk + ρV . The dilaton equation of state in
these models is given by wΦ = Ωk−ΩV

Ωk+ΩV
. Some simple models of dark matter,

assumed dominant in the asymptotic time regime, have been invoked in order
to arrive at the behaviour (12.38). Their respective energy density is such that
Ωd+Ωk+ΩV = 1. The dilatonic charges of such models, that is the appropri-
ate dilaton factors that couple to the kinetic and interaction terms of the dark
matter fields, play a crucial rôle in determining the late-time behaviour of q.
The resulting asymptotic deceleration parameter of this Universe is given by:

qdecel ≡ −
Ḣ + H2

H2
= − 1

H

dH

dχ
− 1 ∼ 1− q

2 + q
(12.39)

which implies that the universe would be accelerating asymptotically if q > 1.
As we have seen above, this information relies heavily on the properties of the
dark matter in this approach.

The evolution of the various cosmological parameters in a typical of such
pBB models is given in Figs. 12.4 and 12.5, taken from the second in [13]. As
we see, current and/or late-eras acceleration of the Universe can be arranged
in these simplified models. However, what remains to be done in this context is
to discuss detailed supersymmetric low-energy models obtained from realistic
string theory, something which may not be feasible until one obtains control
of the full non-perturbative regime of strings.

The reader should bear in mind that the above approach involves string
theory on background fields which satisfy their equations of motion, and hence
it is a case of critical strings. However, in occasions such as Early Universe
cosmology, on-shell situations might not always be in place. An initial cosmi-
cally catastrophic event, such as the collision of two brane worlds or a Big
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Fig. 12.4. Time evolution of ρΦ for q = 0 (dash-dotted curve), q = 0.01 (dashed
curve) and q = 0.1 (dotted curve) in the pre Big Bang cosmology [13]. The initial
scale is ai = 10−20aeq, and the epoch of matter-radiation equality corresponds to
χ 
 46. Left panel: the dilaton energy density is compared with the radiation (thin
solid curve) and matter (bold solid curve) energy density. Right panel: the dilaton
energy density (in critical units) is compared with the analytical estimates for the
focusing and dragging phases

Bang, certainly takes the theory way out of equilibrium. It might therefore
be that the currently observed acceleration of the Universe is due to some
relaxation process from an early-Universe cosmic catastrophe.

This is the point of view we shall discuss next, namely we shall attempt to
formulate such off-equilibrium scenarios within the context of (non-critical)
strings propagating in off-shell backgrounds. We shall associate the notion of
non equilibrium in strings with that of deviations from conformal invariance
of the pertinent σ-models describing perturbative stringy excitations at times
long enough after the initial collision so that the σ-model approach suffices,
but such that relaxation, non-critical-string effects are still important.

12.4.3 Non Critical Strings and Dark Energy

The General Idea

Pre Big Bang scenaria, as we have just discussed, involve strong string cou-
plings at late times, and hence the various form factors appearing in the
effective actions are essentially unknown for the present era.

An alternative approach, is to invoke the weak coupling late-era dilaton
cosmology of [27], which has the advantage that at late eras perturbative
σ-model calculations are reliable, and hence one can perform concrete compu-
tations and predictions. The analysis of [27] however has to be generalized to
include inflationary and other backgrounds with horizons, if the dark matter
issue and accelerating Universes are to be tackled. This cannot be achieved
with the simple linear dilaton backgrounds of [27].
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Fig. 12.5. Left panel: Late-time evolution of the dark matter (solid curve), bary-
onic matter (dashed curve), radiation (dotted curve) and the dilaton (dash-dotted
curve) energy densities, for the pBB string cosmology model of [13]. The upper hor-
izontal axis gives the log10 of the redshift parameter. Right panel: for the same
model, the late-time evolution of q (fine-dashed curve), wΦ (dash-dotted curve), ΩΦ
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In [10] we went one step beyond the analysis in [27], and considered
more complicated σ-model metric backgrounds that did not satisfy the σ-
model conformal-invariance conditions, and therefore needed Liouville dress-
ing [9] to restore conformal invariance. Such backgrounds could even be time-
dependent, living in (d + 1)-dimensional target space-times. Various math-
ematically consistent forms of non-criticality can be considered, for instance
cosmic catastrophes such as the collision of brane worlds [30, 35]. Such models
lead to supercriticality of the associated σ models describing stringy excita-
tions on the brane worlds. The Liouville dressing of such non-critical models
results in (d+2)-dimensional target spaces with two time directions. An impor-
tant point in [10] was the identification of the (world-sheet zero mode of the)
Liouville field with the target time, thereby restricting the Liouville-dressed σ
model to a (d+ 1)-dimensional hypersurface of the (d+ 2)-dimensional target
space, thus maintaining the initial target space-time dimensionality. We stress
that this identification is possible only in cases where the initial σ model is
supercritical, so that the Liouville mode has time-like signature [9, 27]. In
certain models [30, 35], such an identification was proven to be energetically
preferable from a target-space viewpoint, since it minimized certain effective
potentials in the low-energy field theory corresponding to the string theory at
hand.

All such cosmologies require some physical reason for the initial depar-
ture from the conformal invariance of the underlying σ model that describes
string excitations in such Universes. The reason could be an initial quantum
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fluctuation, or, in brane models, a catastrophic cosmic event such as the col-
lision of two or more brane worlds. Such non-critical σ models relax asymp-
totically to conformal σ models, which may be viewed as equilibrium points
in string theory space, as illustrated in Fig. 12.6. In some interesting cases
of relevance to cosmology [14], which are particularly generic, the asymptotic
conformal field theory is that of [27] with a linear dilaton and a flat Minkowski
target-space metric in the σ-model frame. In others, the asymptotic theory is
characterized by a constant dilaton and a Minkowskian space-time [30]. Since,
as we discussed in [10] and review briefly below, the evolution of the central-
charge deficit of such a non-critical σ model, Q2(t), plays a crucial rôle in
inducing the various phases of the Universe, including an inflationary phase,
graceful exit from it, thermalization and a contemporary phase of accelerating
expansion, we term such Liouville string-based cosmologies Q-Cosmologies.

The use of Liouville strings to describe the evolution of our Universe
has a broad motivation, since non-critical strings are associated with non-
equilibrium situations, as are likely to have occurred in the early Universe. The
space of non-critical string theories is much larger than that of critical strings.
It is therefore remarkable that the departure from criticality may enhance the
predictability of string theory to the extent that a purely stringy quantity such

STRING THEORY 
SPACE 

FIXED (CONFORMAL)
POINT #1

FIXED (CONFORMAL)
POINT # 2

CENTRAL CHARGE C1

CENTRAL CHARGE C2

C1 C2>

DIRECTION OF FLOW

RG FLOW

Fig. 12.6. A schematic view of string theory space, which is an infinite-dimensional
manifold endowed with a (Zamolodchikov) metric [28]. The dots denote con-
formal string backgrounds. A non-conformal string flows (in a two-dimensional
renormalization-group sense) from one fixed point to another, either of which could
be a hypersurface in theory space. The direction of the flow is irreversible, and is
directed towards the fixed point with a lesser value of the central charge, for unitary
theories, or, for general theories, towards minimization of the degrees of freedom of
the system
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as the string coupling gs may become accessible to experiment via its relation
to the present-era cosmic acceleration parameter: g2

s = −q0 [36]. Another ex-
ample arises in a non-critical string approach to inflation, if the Big Bang is
identified with the collision of two D-branes [35]. In such a scenario, astro-
physical observations may place important bounds on the recoil velocity of
the brane worlds after the collision, and lead to an estimate of the separation
of the branes at the end of the inflationary period [33].

In such a framework, the identification of target time with a world-sheet
renormalization group scale, the zero mode of the Liouville field [10], pro-
vides a novel way of selecting the ground state of the string theory. This is
not necessarily associated with minimization of energy, but could simply be
a result of cosmic chance. It may be a random global event that the initial
state of our cosmos corresponds to a certain Gaussian fixed point in the space
of string theories, which is then perturbed into a Big Bang by some relevant
(in a world-sheet sense) deformation, which makes the theory non-critical,
and hence out of equilibrium from a target space-time viewpoint. The the-
ory then flows, as indicated in Fig. 12.6, along some specific renormalization
group trajectory, heading asymptotically to some ground state that is a local
extremum corresponding to an infrared fixed point of this perturbed world-
sheet σ-model theory. This approach allows for many ‘parallel universes’ to be
implemented, and our world might be just one of these. Each Universe may
flow between different fixed points, its trajectory following a perturbation by
a different operator. It seems to us that this scenario is more attractive and
specific than the landscape scenario [26], which has recently been advocated
as a framework for parametrizing our ignorance of the true nature of string/M
theory.

Liouville Strings: A Brief Review of the Formalism

We commence our analysis with a brief review of the Liouville dressing proce-
dure for non-critical strings, with the Liouville mode viewed as a local world-
sheet renormalization group scale [10]. Consider a conformal σ-model, de-
scribed by an action S∗ on the world-sheet Σ, which is deformed by (non
conformal) deformations

∫
Σ

giVid
2σ, with Vi appropriate vertex operators.

Sg = S∗ +
∫
Σ

giVid
2σ . (12.40)

The non-conformal nature of the couplings gi implies that their (flat)world
sheet renormalization group β-functions, βi, are non-vanishing. The generic
structure of such β-functions, close to a fixed point, {gi = 0} reads:

βi = (hi − 2)gi + cijkg
jgk + O(g3) , (12.41)

where hi are the appropriate conformal dimensions. In the context of Liou-
ville strings, world-sheet gravitational dressing is required. The “gravitation-
ally” dressed couplings, λi(g, φ), which from our point of view correspond to
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renormalized couplings in a curved space, read to O(g2) [9], in a weak field
gi-expansion we assume throughout:

λi(g, φ) = gieαiφ +
π

Q + 2αi
cijkg

jgkφeαiφ + O(g3), Q2 =
1
3
(c− c∗) ,

(12.42)
where φ is the (world-sheet zero mode) of the Liouville field, and Q2 is the cen-
tral charge deficit, with c = c[g] the (‘running’) central charge of the deformed
theory [28], and c∗ one of its critical values (conformal point) about which the
theory is perturbed by means of the operators V i. Close to a fixed point Q2

may be considered as independent of g, but this is not true in general. Finally,
αi are the gravitational anomalous dimensions:

αi(αi + Q) = 2− hi for c ≥ c∗ . (12.43)

Below we shall concentrate exclusively to the supercritical string case, Q2 ≥ 0,
which from the point of view of identifying the Liouville mode with target
time, corresponds to a Minkowskian signature spacetime manifold.

Due to the renormalization (12.42), the critical-string conformal invariance
conditions, amounting to the vanishing of flat-space β-functions, are now sub-
stituted by:

λ̈i + Qλ̇i = −βi(λ) + . . . for c ≥ c∗ , (12.44)

where the minus sign in front of the β-function on the right-hand-side is due
to the supercriticality (c > c∗) of the string, the overdot denotes derivative
with respect to the Liouville mode φ, and the . . . denote higher-order terms,
quadratic in λ̇i, O

(
(λ̇i)2

)
. As we argued in [10], such terms can either be

removed by field redefinitions, or alternatively are negligible if one works in
the neighbourhood of a world-sheet renormalization-group fixed point, which
is the case we shall consider in this work. The notation βi(λ) denotes flat-
world-sheet β-functions but with the formal substitution gi → λi(g, φ). Note
the minus sign in front of the flat world sheet β-functions βi in (12.44), which
is characteristic of the supercriticality of the string [9]. Notice that upon the
identification of the Liouville mode φ with the target time t the overdot de-
notes temporal derivative.

Unless otherwise stated, for notational brevity from now on we shall use
the notation

λi → gi (12.45)

since we shall only be dealing with Liouville renormalized background fields
gi(φ,Xμ) (with μ a target-space-time index).

We now mention that, in the case of stringy σ models, where the cou-
plings gi are background fields, depending on the coordinates of the target
space-time, the diffeomorphism invariance of the target space results in the
replacement of (12.44) by:

g̈i + Q(t)ġi = −β̃i , (12.46)
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where the β̃i are the Weyl anomaly coefficients of the stringy σ model in the
background {gi}, which differ from the ordinary world-sheet renormalization-
group βi functions by terms of the form:

β̃i = βi + δgi . (12.47)

In the above formula δgi denote transformations of the background field gi

under infinitesimal general coordinate transformations, e.g. for gravitons [4]
β̃Gμν = βGμν + ∇(μWν), with Wμ = ∇μΦ, and βGμν = Rμν to order α′ (one
σ-model loop).

In [10] we have treated the Liouville mode as a local (covariant) world-
sheet renormalization-group scale. To justify formally this interpretation, one
may write

φ = − 2
α
τ , τ ≡ −1

2
logA , A =

∫
Σ

d2σ
√
γ =

∫
Σ

d2σ
√

γ̂eαφ ,

α = −Q

2
+

1
2

√
Q2 + 8 , (12.48)

where γ is a world-sheet metric, and γ̂ is a fiducial metric, obtained after the
conformal gauge choice in terms of the Liouville mode φ [9]. We thus observe
that the Liouville mode is associated with the logarithm of the world-sheet
area A.

Using (12.48), we can re-write (12.42) in a standard “flat-world-sheet”
renormalization group form [10, 32]:

d

dτ
λi = (h̃i − 2)λi + πc̃ijkλ

jλk + . . . ,

h̃i − 2 = − 2
α
αi , c̃ijk = − 2

α(Q + 2αi)
cijk . (12.49)

which justifies formally the identification [10] of the Liouville mode with a
local renormalization group scale on the world sheet. It also implies that the
point φ → ∞ is an infrared fixed point of the flow, in which case the world-
sheet area diverges |A| → ∞.

A highly non-trivial feature of the βi functions is the fact that they are
expressed as gradient flows in theory space [10, 28], i.e. there exists a ‘flow’
function F [g] such that

βi = Gij δF [g]
δgj

, (12.50)

where Gij is the inverse of the Zamolodchikov metric in theory space [28],
which is given by appropriate two-point correlation functions between vertex
operators V i,

Gij ∼ Limz→02z2z2 < Vi(z)Vj(0) > , (12.51)

where z denotes a complex Euclidean world-sheet coordinate. In the case of
stringy σ-models the flow function F may be identified [10] with the running
central charge deficit Q2[g].
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The set of equations (12.46,12.50) defines the generalized conformal in-
variance conditions, expressing the restoration of conformal invariance by the
Liouville mode. The solution of these equations, upon the identification of
the Liouville zero mode with the original target time, leads to constraints in
the space-time backgrounds [10, 30], in much the same way as the confor-
mal invariance conditions βi = 0 define consistent space-time backgrounds for
critical strings [4].

Helmholtz Conditions, and Liouville Equations as Equations
of Motion from an (off-shell) Effective Action

An important comment we would like to make concerns the possibility of de-
riving the set of equations (12.44,12.46) from a target space action. This issue
has been discussed in the affirmative in [10], where it was shown that the
set of equations (12.44) satisfies the Helmholtz conditions for the existence of
an off-shell action in the ‘space of couplings’ {gi} of the non-critical string.
The property (12.50) is crucial to this effect. Upon the identification of target
time with the Liouville mode [10] this action becomes identical with the tar-
get space action describing the off-shell dynamics of the Liouville string. We
should stress the fact that the action is off shell, in the sense that the on-shell
conditions correspond to the vanishing of the β-functions βi, while in our case
βi 
= 0. Let us briefly review these arguments below.

Our point is to demonstrate that the generalized conformal invariance
equations (12.44,12.46) obey the necessary conditions to be derived by a La-
grangian, which however is off-shell. The conditions for the existence of an
underlying Lagrangian L whose variations with respect the appropriate dy-
namical variables gi are equivalent (but not necessarily identical) to (12.44)
are determined by the existence of a non-singular matrix ωij with

ωij

(
α′ g̈j +

√
α′ Q ġj + βj

)
=

d

dφ

(
∂L

∂ġi

)
− ∂L

∂gi
(12.52)

which obeys the Helmholtz conditions [31]

ωij = ωji (12.53)
∂ωij
∂ġk

=
∂ωik
∂ġj

, (12.54)

1
2

D

Dφ

(
ωik

∂fk

∂ġj
− ωjk

∂fk

∂ġi

)
= ωik

∂fk

∂gj
− ωjk

∂fk

∂gi
(12.55)

D

Dφ
ωij = − 1

2α′

(
ωik

∂fk

∂ġj
+ ωjk

∂fk

∂ġi

)
, (12.56)

where

f i ≡ −
√
α′ Q ġi − βi[g] ,

D

Dφ
≡ ∂

∂φ
+ ġi

∂

∂gi
+

f i

α′
∂

∂ġi
. (12.57)
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If the conditions (12.53)–(12.56) are met, then

α′ ωij =
∂2L

∂ġi∂ġj
(12.58)

and the Lagrangian in (12.58) can be determined up to total derivatives ac-
cording to [31]

S ≡
∫

dφ L = −
∫

dφ

∫ 1

0

dκ giEi(φ, κg, κġ, κg̈) ,

Ei(φ, g, ġ, g̈) ≡ ωij

(
α′ g̈j +

√
α′ Q ġj + βj

)
. (12.59)

In the case of non-critical strings one can identify [10]

ωij = − 1√
α′ Gij , (12.60)

where the Zamolodchikov metric Gij in theory space is given by (12.51).
Near a fixed point in moduli (gi) space, where the variation of Q is small,

the action (12.59) then becomes [10]

S =
∫

dφ
(
−

√
α′
2 ġi Gij [g;φ] ġj − 1√

α′ C[g;φ] + . . .
)

, (12.61)

where the dots denote terms that can be removed by a change of renormal-
ization scheme. Within a critical string (on-shell) approach, the action (12.59,
12.61) can be considered as an effective action generating the string scattering
amplitudes. Here it should be considered as a target space ‘off-shell’ action for
non-critical strings [10]. From (12.61) it follows that the canonical momenta
pi conjugate to the couplings gi are given by

pi =
√
α′ Gij ġj . (12.62)

Let us briefly sketch the validity of the conditions (12.53)–(12.56) for the
choice (12.60). Since Gij is symmetric, the first Helmholtz condition (12.53)
is satisfied. The conditions (12.54) and (12.55) hold automatically because of
the gradient flow property (12.50) of the β-function, and the fact that Gij and
C[g;φ] are functions of the coordinates gi and not of the conjugate momenta.
Finally, the fourth Helmholtz condition (12.56) yields the equation

D

Dφ
Gij =

Q√
α′ Gij , (12.63)

which implies an “expanding scale factor” for the “metric in moduli space” of
the string

Gij [φ; g(φ)] = eQφ/
√
α′ Ĝij [φ; g(φ)] , (12.64)

where Ĝij is a Liouville renormalization group invariant function, i.e. a fixed
fiducial metric on moduli space. This is exactly the form of the Zamolodchikov
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metric for Liouville strings [10]. Thus there is an underlying Lagrangian dy-
namics in the non-critical string problem.

The action (12.61) allows canonical quantization, which as we have men-
tioned is induced by including higher genus effects in the string theory [10].
In the canonical quantization scheme the couplings gi and their canonical
momenta (12.62) are replaced by quantum mechanical operators (in target
space) ĝi and p̂i obeying

[[
ĝi, p̂j

]]
= i�M δij , (12.65)

where the quantum commutator [[· , ·]] is defined on the moduli space M of
deformed conformal field theories of the form (12.40), and �M is an appropri-
ate “Planck constant”. We can use the Schrödinger representation in which
the canonical momentum operators obey [10]

〈
p̂i

〉
L

=
〈
−i δ

δgi

〉
L

=
〈
Vi

〉
L
. (12.66)

Thus the canonical commutation relation (12.65) in general yields, on ac-
count of (12.66), a non-trivial commutator between the couplings gi and the
associated vertex operators of the (genera resummed) σ-models.

Liouville String as a Critical String in one Target-space
Dimension Higher

The restoration of conformal invariance by the Liouville mode implies that
in an enlarged target space-time, with coordinates (φ,X0, X i) the resulting
σ-model will be conformal, for which one would have the normal conformal
invariance conditions [4]. This means that the set of equations (12.44) can be
cast in a conventional form, amounting to the vanishing of β functions of a
σ-model, but in this enlarged space:

β̃(D+1)(g) = 0 , (12.67)

where D is the target-space dimensionality of the σ-model before Liouville
dressing, g are Liouville-dressed fields and there are Liouville components as
well in the appropriate tensorial coordinates.

For fields of the string multiplet, it can be checked explicitly that (12.67)
and (12.44) (in D-dimensions) are equivalent [32]. For completeness, we
shall demonstrate this by considering explicitly the dilaton Φ, graviton Gμν

and antisymmetric tensor fields Bμν . We shall not consider explicitly the
tachyon field, although its inclusion is straightforward and does not modify
the results.

To O(α′), the appropriate σ-model β-functions for a D-dimensional target
space-time, parametrized by coordinates Xμ, μ = 0, 1, . . .D − 1, read [4]:
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β̂Φ(D) = βΦ(D) − 1
4
GμνβG(D)

μν =
1
6

(
C(D) − 26

)
,

C(D) = D − 3
2
α′
(
R− 1

12
HμνρH

μνρ − 4(∇Φ)2 + 4∇2Φ

)
,

βG(D)
μν = α′

(
Rμν + 2∇μ∇νΦ−

1
4
HμσρHν

σρ

)
,

βB(D)
μν = α′

(
−1

2
∇ρHρ

μν + Hρ
μν∇ρΦ

)
. (12.68)

where Hμνρ = 3∇[μBνρ] is the antisymmetric tensor field-strength, on which
the β-functions depend, as dictated by an appropriate Abelian Gauge sym-
metry [4].

To demonstrate that such β-functions yield equations of the form (12.44),
when they are reduced to a target-space manifold with one lower dimen-
sion, we separate from the expressions (12.68) a Liouville component. We
first note that there is a special normalization of the σ-model kinetic term of
the Liouville field φ for which (12.43) is valid, which implies that the enlarged
space-time metric is of “Robertson-Walker” form with respect to φ, i.e.:

ds2 = −dφ2 + Gμν(φ,Xμ)dXμ dXν , μ, ν = 0, 1, . . .D − 1 (12.69)

where the Minkowski signature of the Liouville term is due to the assumed
supercriticality of the non-critical string [9, 27]. This implies that for graviton
and antisymmetric tensor β-functions one has:

β̃Gφφ = β̃G,Bφμ = 0 (12.70)

which are viewed as additional constraints. However, from the point of view
of the enlarged space-time such constraints can be easily achieved by an ap-
propriate general coordinate transformation, which from our point of view is
a renormalization-scheme choice.

We find it convenient to shift the dilaton [32]:

Φ→ ϕ = 2Φ− log
√
G . (12.71)

In this case we may write (12.68) as follows (to keep consistency with the
previous notation we have denoted the β-functions in the enlarged space-time
(φ,Xμ) by β̃):

0 = C(D+1) − 26 = C(D) − 25− 3Gφφ
(
ϕ̈− (ϕ̇)2

)
,

0 = β̃Gφφ = 2ϕ̈− 1
2
GμκGνλ

(
ĠμνĠκλ + ḂμνḂκλ

)
,

0 = β̃Gμν = βG(D)
μν −Gφφ

(
G̈μν − ϕ̇Ġμν −Gκλ[ĠμκĠνλ − ḂμκḂνλ]

)
,

0 = β̃Bμν = β(D)
μν −Gφφ

(
B̈μν − ϕ̇Ḃμν − 2GκλĠκ[μḂν]λ

)
, (12.72)
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where the overdot denotes total Liouville scale derivative. In our interpretation
of the Liouville field as a (local) renormalization scale [10] this is equivalent to
a total world-sheet renormalization-group derivative. The (12.72) are precisely
of the form (12.46) of the generalized conformal invariance conditions.

In Liouville strings [9], the dilaton Φ, as being coupled to the world-sheet
curvature, receives contributions from the Liouville mode φ which are linear.
In this sense one may split the dilaton field in φ-dependent parts and Xμ

dependent parts

Φ(φ,Xμ) = −1
2
Qφ + Φ̃(Xμ) , (12.73)

where Q2 = 1
3

(
C(D) − 25

)
is the central charge deficit, and the normalization

of the term linear in φ is dictated by the analysis of [9], in which the Liouville
mode has a canonical σ-model kinetic term. This implies that ϕ is such that:

ϕ̇ = −Q +O(Q̇,
√
GGμνĠμν) . (12.74)

Note that, in the context of the (12.72), the terms in ϕ̇ proportional to
Ġμν , will yield terms quadratic in Liouville derivatives of fields. Upon our
interpretation of the Liouville field as a (local) renormalization scale [10]
terms quadratic in the Liouville derivatives of fields, i.e. terms of order
O
(
ĠḂ, ĠĠ, ḂḂ

)
become quadratic in appropriate β-functions.

The same is true for Q̇ terms, on account of the renormalization-group in-
variance of the central charge C(D), upon viewing the Liouville zero mode as
a world-sheet renormalization-group scale [10]. Indeed, in such a case the only
dependence of Q2 ∝ C(D) − C∗ on the liouville mode would be through its
dependence on the couplings gi = Gμν , Bμν , ... , thus Q̇2(= 2QQ̇) = −βi∂iC
(where ∂i = δ/δgi denotes functional derivatives with respect to the appro-
priate background field/coupling gi). On account of the gradient flow (12.50),
which can be shown to be true for the Liouville local renormalization-group
world-sheet scale [10], one has ∂iC ∝ βi and, since Q is a perturbative series in
the couplings gi (assumed weak), one obtains that Q̇ contains terms quadratic
in Liouville derivatives of fields gi.

Such quadratic terms may be removed by appropriate field redefini-
tions [10], provided the gradient flow property (12.50) is valid. Alternatively,
one may ignore such quadratic terms in Liouville derivatives of fields by work-
ing in the neighbourhood of a renormalization group fixed point. Such terms
are of higher order in a weak-field/ σ-model-coupling expansion, and thus can
be safely neglected if one stays close to a fixed point. This is the case of the
specific example of colliding brane cosmologies to be discussed in the next
chapter, where one encounters only marginal non-criticality for slow-moving
D-brane worlds. Ignoring such higher-order terms, therefore, and taking into
account world-sheet renormalizability, one obtains

ϕ̈ + . . . = 0 , (12.75)

where the . . . denote the neglected (higher-order) terms.



12 The Issue of Dark Energy in String Theory 365

Taking into account that Gφφ = −1 for supercritical strings [27] (cf.
(12.69)), we observe that, as a result of (12.74), (12.75), the first two of the
(12.72) are satisfied automatically (up to removable terms quadratic in Liou-
ville derivatives of fields). The first of these equations is the dilaton equation,
which thus becomes equivalent to the definition of Q2, and therefore acquires
a trivial content in this context. Notice also that the second of these equations
is due to the constraints (12.70), which should be taken into account together
with the set of equations (12.72). It can be shown [32] that the rest of these
constraints do not impose further restrictions, and thus can be ignored, at
least close to a fixed point, where the constraints can be solved for arbitrary
Gμν , Bμν fields. The rest of the equations (12.72) then, for graviton and an-
tisymmetric tensor fields, reduce to (12.46), up to irrelevant terms quadratic
in Liouville derivatives of fields.

This completes our proof for the case of interest. What we have shown
above is that the Liouville equations (12.44,12.46) can be obtained from a set
of conventional β-function equations (12.67) if one goes to a σ-model with
one more target-space dimension, the extra dimension being provided by the
Liouville field.

In the remainder of this subsection, however, we shall be dealing with
situations in which the identification of the Liouville mode φ with (some
function of) the target time X0 will be made [10, 14, 36] in expressions of
the form (12.67) in the enlarged (D +1)-dimensional spacetime (φ,Xμ). This
latter approach is distinct from the standard Liouville approach described
above in which φ was an independent mode. In that case, one should look
for consistent solutions of the resulting equations in the D-dimensional sub-
manifold (φ = X0, X i). In this sense, the target-space dimensionality remains
D, but the resulting string will be characterized by the Liouville (12.44),
supplemented by the constraint of the identification φ = f(X0), and will
have a non zero central charge deficit Q2(φ), which is in general time depen-
dent, and will appear as relaxation vacuum energy in the target space of the
string.

To put it in other words, one starts from a critical σ-model, perturbs it
by some non-conformal deformation, induces non-criticality, but instead of
using an extra Liouville σ-model field, one uses the existing time coordinate
as a Liouville mode, i.e. one invokes a readjustment of the time dependence
of the various background fields (a sort of back reaction), in order to restore
the broken conformal invariance. It is a non-trivial fact that there are con-
sistent solutions to the resulting equations, and this is the topic of the next
part of the lecture. Namely, we shall consider some specific models of non-
critical strings, associated with cosmically catastrophic events in the early
Universe, in which we shall identify the time with the Liouville mode dy-
namically, and we shall present consistent solutions of (12.67), under the con-
straint φ = X0, to lowest order O(α′) in the α′ expansion of the respective
σ-model.
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Non-critical Strings
in Cosmological Dilaton and Graviton Backgrounds
and Relaxation Dark-energy Models

When applied to homogeneous dilaton cosmologies, with dilaton and graviton
backgrounds, depending only on time, the above-described Liouville approach
yields interesting results, including a modified asymptotic scaling of the dark
matter energy density, a−2 with the scale factor, as well as an expression of
the current-era acceleration parameter of the Universe roughly proportional
to the square of the string coupling, q0 ∝ −(g0

s)
2, g2

s = e2Φ, with Φ the current
era dilaton (this proportionality relation becomes exact at late eras, when the
matter contributions become negligible due to cosmic dilution). The current-
era dark energy in this framework relaxes to zero with the Einstein cosmic
time as 1/t2, and this scaling law follows from the generalized conformal in-
variance conditions (12.46), characterizing the Liouville theory, as well as the
identification of time with the Liouville mode [10].

To be specific, after this identification, the relevant Liouville (12.46) for
dilaton and graviton cosmological backgrounds, in the Einstein frame [27],
read [36]:

3 H2 − �̃m − �Φ =
e2Φ

2
J̃φ ,

2 Ḣ + �̃m + �Φ + p̃m + pΦ =
J̃ii
a2

,

Φ̈ + 3HΦ̇ +
1
4

∂V̂all
∂Φ

+
1
2

(�̃m − 3p̃m) = −3
2
J̃ii
a2
− e2Φ

2
J̃Φ . (12.76)

where ρ̃m and p̃m denote the matter energy density and pressure respectively,
including dark matter contributions. As usual, the overdot denotes deriva-
tives with respect to the Einstein time, and H is the Hubble parameter of the
Robertson-Walker Universe. The r.h.s of the above equations denotes the non-
critical string off-shell terms appearing in (12.46), due to the non-equilibrium
nature of the pertinent cosmology. The latter could be due to an initial cos-
mically catastrophic event, such as the collision of two brane worlds:

J̃Φ = e −2Φ (Φ̈− Φ̇2 + QeΦΦ̇) ,

J̃ii = 2 a2 ( Φ̈ + 3HΦ̇ + Φ̇2 + (1− q)H2 + QeΦ(Φ̇ + H)) . (12.77)

Notice the dissipative terms proportional to Qφ̇, which are responsible for the
terminology “Dissipative Cosmology” used alternatively for Q-cosmology [36].
In these equations, q is the deceleration q ≡ −äa/ȧ2. The potential appearing
in (12.76) is defined by V̂all = 2Q 2 exp (2Φ) + V where, for the sake of
generality, we have allowed for an additional potential term in the string
action −√−gE V (with gE denoting Einstein-frame metric).

A brief summary of the results of our analysis for a model-case Q-
cosmology, are presented in Figs. 12.7, 12.8, 12.9 and 12.10. The model is
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Fig. 12.7. Left panel: The dilaton φ, the (square root of the) central charge deficit
Q and the ratio a/a0 of the cosmic scale factor as functions of the Einstein time
tEinstein. The present time is located where a/a0 = 1 and in the figure shown
corresponds to ttoday 
 1.07. The input values for the densities are ρb = 0.238, ρe =
0.0 and we is 0.5. The dilaton value today is taken Φ = 0.0. Right panel: The
values of Ωi ≡ ρi/ρc for the various species as functions of tEinstein

discussed in some detail in [36]. Notice the late-era presence of exotic a−2-
scaling of matter species, attributed to dark matter, denoted by ρe in the
figures. Moreover, the asymptotic acceleration of the universe tends to zero as
the square of the string coupling (cf. Fig. 12.10), qdecel ∼ −g2

s = −e2Φ ∝ 1/t2,
with t the cosmic time in the Einstein frame.

The reader is invited to compare these results with the ones of critical-
string dilaton cosmologies in pre-Big-bang scenarios presented above (cf. Figs.
12.4 and 12.5), in particular with respect to the effects of the non-critical, off-
shell terms “J ”, which appear significant at the current era [36].

An important result of the analysis of [36] is the fact that the conventional
Boltzmann equation, controlling the evolution of species densities, n, needs
to be modified in Liouville Q-cosmology [37], in order to incorporate consis-
tently the effects of the dilaton dissipative pressure ∼ Φ̇ and the non-critical
(relaxation) terms, “J ”:

dn

dt
= −3 H n − < σv > (n2 − n2

eq) + Φ̇ n + “J /mX” . (12.78)

in a standard notation [38], where 〈. . .〉 denotes a thermal average, σ is the
annihilation cross section, v is the Moeller velocity, and neq denotes a thermal
equilibrium number density.

The respective relic density of the species X , with mass mX , is then ob-
tained from ΩX h2

0 = n mXh2
0, after solving this modified equation. This may
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Fig. 12.8. Left panel: Ratios of Ω’s for the dilaton (Φ), exotic matter (e) and the
non-critical terms (“noncrit”) to the sum of “dust” (b) and radiation (r) Ωb + Ωr

densities. Right panel: The quantities ρb a3, for “dust”, ρr a4 and ρe a2 as
functions of tEinstein

have important phenomenological consequences, in particular when obtain-
ing constraints on supersymmetric particle-physics models from astrophysical
data.

We shall not discuss these issues further here, due to lack of space. For
more details we refer the interested reader to the literature [10, 36, 37]. We do
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Fig. 12.9. Left panel: The deceleration q and the dimensionless Hubble expansion
rate Ĥ ≡ H√

3H0
as functions of tEinstein. Right panel: The derivative of the dilaton

and its ratio to the dimensionless expansion rate
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Fig. 12.10. Left panel: The ratio |q|/g2
s as function of the redshift for z ranging

from z = 0.2 to future values z = −0.6, for the inputs discussed in the main text. The
rapid change near z ≈ 0.16 signals the passage from deceleration to the acceleration
period. Right panel: The values of the string coupling constant plotted versus the
redshift in the range z = 0.0 − 1.0

hope, however, that we have introduced the interested reader into the basic
techniques and concepts underlying the idea of using non-critical strings as a
way of describing non-equilibrium systems in string theory, and in particular
cosmology.

12.5 Conclusions

In this work I have reviewed various issues related to the consistent incorpo-
ration of Dark Energy in string theory. I have discussed only traditional string
theory and did not cover the modern extension, including membranes, except
briefly in some specific examples, involving colliding branes worlds; but even
then, I concentrated on perturbative string excitations on such branes. The
topic of brane cosmology per se has been covered by R. Maartens and M. Sami
contributions in this volume.

One of the most important issues I discussed concerns de Sitter space,
and in general space-times with horizons in string theory. We have studied
general properties, including holographic scenarios, which may be the key
to an inclusion of such space-times in the set of consistent (possibly non
perturbative) ground states of strings.

We have also seen that perturbative strings are incompatible with space-
times with horizons, mainly due to the lack of a scattering matrix. However,
non-critical strings may evade this constraint, and we have discussed briefly
how accelerating universes can be incorporated in non critical (Liouville)
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strings. The use of Liouville strings to describe the evolution of our Uni-
verse is natural, since non-critical strings are associated with non-equilibrium
situations which undoubtedly occurred in the early Universe.

The dilaton played an important rôle in string cosmology, and we have
seen how it can act as a quintessence field, responsible for the current-era
acceleration of the Universe.

There are many phenomenological tests of this class of cosmologies that
can be performed, which the generic analysis presented here is not sufficient
to encapsulate. Tensor perturbations in the cosmic microwave background
radiation is one of them. The emission of gravitational degrees of freedom from
the hot brane to the cold bulk, during the inflationary and post-inflationary
phases in models involving brane-worlds is something to be investigated in
detail. A detailed knowledge of the dependence of the equation of state on
the redshift is something that needs to be looked at in the context of specific
models. Moreover, issues regarding the delicate balance of the expansion of the
Universe and nucleosynthesis, which requires a very low vacuum energy, must
be resolved in specific, phenomenologically semi-realistic models, after proper
compactification to three spatial dimensions, in order that the conjectured
cosmological evolution has a chance of success.

Finally, the compactification issue per se is a most important part of a
realistic stringy cosmology. In our discussion above, we have assumed that a
consistent compactification takes place, leading to effective four-dimensional
string-inspired equations of motion. In realistic scenarios, however, details
of how the extra dimensions are compactified play a key rôle in issues like
supersymmetry breaking.

In this review I did not discuss higher-curvature modifications of the low-
energy Einstein action, which characterize all string-inspired models, including
brane worlds scenarios. Such terms may play an important rôle in Early Uni-
verse cosmology. For instance, they may imply initial singularity-free string
cosmologies [39], or non-trivial black hole solutions with (secondary) dila-
ton hair [40], which can play a rôle in the Early universe sphaleron tran-
sitions. So, before closing the lecture, I will devote a few words on their
form.

In ordinary string theory, which is the subject of the present lecture, such
higher-order terms possess ambiguous coefficients in the effective action. This
is a result of local field redefinitions, which leave the (low-energy) string scat-
tering amplitudes invariant, and hence cannot be determined by low energy
considerations. In ordinary string theory [4], with no space-time boundaries
in (the low-energy) target space-time, such ambiguities imply that the so-
called ghost-free Gauss-Bonnet combination 1

g2s

(
R2
μνρσ − 4R2

μν + R2
)
, with

gs = eΦ the string coupling and Φ the dilaton field, can always be achieved
for the quadratic curvature terms in the string-inspired effective action. Such
terms constitute the first-non-trivial-order corrections to the Einstein term in
bosonic and heterotic string effective actions.
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However, in the case of brane-worlds, with closed strings propagating in the
bulk, things are not so simple. As discussed in [41], field redefinition ambigu-
ities for the bulk low-energy graviton and dilaton fields, that would otherwise
leave bulk string scattering amplitudes invariant, induce brane (boundary)
curvature and cosmological constant terms, with the unavoidable result of am-
biguities in the terms defining the Einstein and cosmological constant terms
on the brane. This results in (perturbative in α′) ambiguities in the cross-over
scale of four-dimensional brane gravity, as well as the brane vacuum energy.
It is not clear to me, however, whether these ambiguities are actually present
in low-energy brane world models. I believe that these bulk-string ambiguities
can be eliminated once the brane effective theory is properly defined, given
that closed and open strings also propagate on the brane world hypersurfaces,
and thus are characterized by their own scattering amplitudes. Matching these
two sets of scattering amplitudes properly, for instance by looking at the con-
formal theory describing the splitting of a closed-string bulk state, crossing
a brane boundary, into two open string excitations on the brane, may lead
to unambiguous brane cross-over and cosmological constant scales, expressed
in terms of the bulk string scale and coupling [34]. These are issues that I
believe deserve further investigation, since they affect early Universe cosmolo-
gies, where such higher-curvature terms are important. I will not, however,
discuss them further here.

I would like to close this lecture with one more remark on the non-
equilibrium Liouville approach to cosmology advocated in [10, 36], and dis-
cussed last in this article. This approach is based exclusively on the treatment
of target time as an irreversible dynamical renormalization group scale on the
world sheet of the Liouville string (the zero mode of the Liouville field itself).
This irreversibility is associated with fundamental properties of the world-
sheet renormalization group, which lead in turn to the loss of information
carried by two-dimensional degrees of freedom with world-sheet momenta be-
yond the ultraviolet cutoff [28] of the world-sheet theory. This fundamental
microscopic time irreversibility may have other important consequences, as-
sociated with fundamental violations of CPT invariance [21] in both the early
Universe and the laboratory, providing other tests of these ideas.
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Abstract. On an empirical level, the most successful alternative to dark matter
in bound gravitational systems is the modified Newtonian dynamics, or MOND,
proposed by Milgrom. Here I discuss the attempts to formulate MOND as a mod-
ification of General Relativity. I begin with a summary of the phenomenological
successes of MOND and then discuss the various covariant theories that have been
proposed as a basis for the idea. I show why these proposals have led inevitably to
a multi-field theory. I describe in some detail TeVeS, the tensor-vector-scalar theory
proposed by Bekenstein, and discuss its successes and shortcomings. This lecture is
primarily pedagogical and directed to those with some, but not a deep, background
in General Relativity.

13.1 Introduction

There is now compelling observational support for a standard cosmological
model. It is most impressive that this evidence is derived from very different
observational techniques applied to very different phenomena: from precise
measurements of anisotropies in the Cosmic Microwave Background (CMB)
[1]; from systematic photometric observations of the light curves of distant
supernovae [2, 3, 4]; from redshift surveys mapping the distribution of observ-
able matter on large scale and interpreting that distribution in the context
of structure formation by gravitational collapse [5, 6]. Using the standard pa-
rameterised Friedmann-Robertson-Walker models (FRW), all of these obser-
vations imply a convergence to a narrow range of parameters that characterise
the Universe; this convergence is rightly heralded as a remarkable achievement
of the past decade.

However, the Universe that we are presented with is strange in its compo-
sition: only five percent is the ordinary baryonic matter that we are familiar
with; twenty-five percent consists of pressureless dark matter presumed to be
fundamental particles that are as yet undetected by other means; and about
seventy percent is the even stranger negative pressure dark energy, possibly
identified with a cosmological term in Einstein’s field equation, and emerging

R. Sanders: Modified Gravity Without Dark Matter, Lect. Notes Phys. 720, 375–402 (2007)

DOI 10.1007/978-3-540-71013-4 13 c© Springer-Verlag Berlin Heidelberg 2007



376 R. Sanders

relatively recently in cosmic history as the dominate contributer to the energy
density budget of the Universe.

A general sense of unease, primarily with this dark energy, has led a num-
ber of people to consider the possibility that gravity may not be described
by standard four-dimensional General Relativity (GR) on large scale (see
Sami, this volume)– that is to say, perhaps the left-hand-side rather than
the right-hand-side of the Einstein equation should be reconsidered. Various
possibilities have been proposed– possibilities ranging from the addition of a
scalar field with a non-standard kinetic term, K-essence [7]; to gravitational
actions consisting of general functions of the usual gravitational invariant,
F (R) theories [8, 9] to braneworld scenarios with leakage of gravitons into a
higher dimensional bulk ([10] and Maartens, this volume). But, in fact, there
is a longer history of modifying gravity in connection with the dark matter
problem– primarily that aspect of the problem broadly described as “missing
mass” in bound gravitational systems such as galaxies or clusters of galaxies.
The observations of this phenomenology have an even longer history, going
back to the discovery of a substantial discrepancy between the dynamical mass
and the luminous mass in clusters of galaxies [11]. The precise measurement
of rotation curves of spiral galaxies in the 1970’s and 1980’s, primarily by 21
cm line observations which extend well beyond the visible disk of the galaxy
[12, 13], demonstrated dramatically that this discrepancy is also present in
galaxy systems.

A fundamental, often implicit, aspect of the cosmological paradigm is that
this observed discrepancy in bound systems is due to the cosmological dark
matter– that the cosmological dark matter clusters on small scale and pro-
motes the formation of virialized systems via gravitational collapse in the
expanding Universe. The necessity of clustering on the scale of small galaxies
implies that there are no phase space constraints on the density of the dark
matter and, hence, that it is cold, or non-relativistic at the epoch of matter-
radiation equality [14]. The exact nature of the hypothetical cold dark matter
(CDM) is unknown but particle physics theory beyond the standard model
provides a number of candidates. There are observational problems connected
with the absence of phase space constraints in this dark matter fluid, problems
such as the formation of numerous but unseen satellites of larger galaxies [15]
and the prediction of cusps in the central density distributions of galaxies–
cusps which are not evident in the rotation curves [16]. But it is usually taken
as a article of faith that “complicated astrophysical processes” such as star
formation and resulting feed-back will solve these problems.

The motivation behind considering modifications of gravity as an alter-
native to CDM is basically the same as that underlying modified gravity as
an alternative to dark energy: when a theory, in this case GR, requires the
existence of a medium which has not been, or cannot be, detected by means
other than its global gravitational influence, i.e. an ether, then it is not un-
reasonable to question that theory. The primary driver for such proposals
has been the direct observation of discrepancies in bound systems– galaxies
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and clusters of galaxies– rather than cosmological considerations, such as that
of structure formation in an expanding Universe. The most successful of the
several suggestions, modified Newtonian dynamics or MOND, has an entirely
phenomenological rather than theoretical basis [17, 18, 19]. In accounting for
the detailed kinematics of galaxies and galaxy groups, while encompassing
global scaling relations and empirical photometric rules, MOND has, with
one simple formula and one new fixed parameter, subsumed a wide range of
apparently disconnected phenomena.

In this respect it is similar to the early proposal of continental drift by
Alfred Wegener in 1912. This suggestion explained a number of apparently
disconnected geological and palaeontological facts but had no basis in deeper
theory; no one, including Wegener, could conceive of a mechanism by which
giant land masses could drift through the oceans of the earth. Hence the
idea was met with considerable ridicule by the then contemporary commu-
nity of geologists and relegated to derisive asides in introductory textbooks.
It was decades later, after the development of the modern theory of plate
tectonics and direct experimental support provided by the frozen-in magnetic
field reversals near mid-oceanic rifts, that the theory underlying continental
drift became the central paradigm of geology and recognised as the princi-
pal process that structures the surface of the earth [20]. I do not wish to
draw a close analogy between MOND and the historical theory of continental
drift, but only to emphasise the precedent: an idea can be basically correct
but not generally accepted until there is an understandable underlying phys-
ical mechanism– until the idea makes contact with more familiar physical
concepts.

The search for a physical mechanism underlying modified Newtonian dy-
namics is the subject here. I begin with a summary of the phenomenological
successes of the idea, but, because this has been reviewed extensively before
[21], I will be brief. I consider the proposals that have been made for modifi-
cations of GR as a basis of MOND. These proposals have led to the current
best candidate– the tensor-vector-scalar (TeVeS) theory of Bekenstein [22], a
theory that is complicated but free of obvious pathologies. I summarise the
successes and shortcomings of the theory, and I present an alternative form
of TeVeS which may provide a more natural basis to the theory. I end by a
discussion of more speculative possibilities.

13.2 The Phenomenology of MOND

13.2.1 The Basics of MOND

If one wishes to modify Newtonian gravity in an ad hoc manner in order
to reproduce an observed property of galaxies, such as asymptotically flat
rotation curves, then it would seem most obvious to consider a 1/r attraction
beyond a fixed length scale r0. Milgrom [17] realized early on that this would
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not work– that any modification explaining the systematics of the discrepancy
in galaxies cannot be attached to a length scale but to a fixed acceleration
scale, a0. His suggestion, viewed as a modification of gravity, was that the
true gravitational acceleration g is related to the Newtonian gravitational
acceleration gn as

gμ(|g|/ao) = gn (13.1)

where ao is a new physical parameter with units of acceleration and μ(x) is
a function that is unspecified but must have the asymptotic form μ(x) = x
when x << 1 and μ(x) = 1 where x >> 1.

The immediate consequence of this is that, in the limit of low accelerations,
g =
√

gnao. For a point mass M, if we set g equal to the centripetal acceleration
v2/r, then the circular velocity is

v4 = GMao (13.2)

in the low acceleration regime. So all rotation curves are asymptotically flat
and there is a mass-velocity relation of the form M ∝ v4. These are aspects
that are built into MOND so they cannot rightly be called predictions. How-
ever, in the context of MOND, the aspect of an asymptotically flat rotation
curve is absolute. Unambiguous examples of rotation curves (of isolated galax-
ies) that decline in a Keplerian fashion at a large distance from the visible
object would falsify the idea.

The implied mass-rotation velocity relation explains a well-known global
scaling relation for spiral galaxies, the Tully-Fisher relation. This is a correla-
tion between the observed luminosity of spiral galaxies and the characteristic
rotation velocity, a relation of the form L ∝ vα where α ≈ 4 if luminosity is
measured in the near-infrared. If the mass-to-light ratio of galaxies does not
vary systematically with luminosity, then MOND explains this scaling rela-
tion. In addition, because it reflects underlying physical law, the relation is as
absolute. The TF relation should be the same for different classes of galaxies
and the logarithmic slope (at least of the MASS-velocity relation) must be
4. Moreover, the relation is essentially one between the total baryonic mass
of a galaxy and the asymptotic flat rotational velocity– not the peak rota-
tion velocity but the velocity at large distance. This is the most immediate
prediction [23, 24].

The near-infrared TF relation for a sample of galaxies in the Ursa Major
cluster (and hence all at nearly the same distance) is shown as a log-log plot
in Fig. 13.1 where the velocity is that of the flat part of the rotation curve
[25]. The scatter about the least-square fit line of slope 3.9± 0.2 is consistent
with observational uncertainties (i.e. no intrinsic scatter).

Given the mean M/L in a particular band (≈ 1 in the K’ band), this
observed TF relation (and 13.2) tells us that ao must be on the order of 10−8

cm/s2. It was immediately noticed by Milgrom that ao ≈ cHo to within a
factor of 5 or 6. This cosmic coincidence suggests that MOND, if it is right,
may reflect the effect of cosmology on local particle dynamics.
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Fig. 13.1. The near-infrared Tully-Fisher relation of Ursa Major spirals [25]. The
rotation velocity is the asymptotically constant value. The line is a least-square fit
to the data and has a slope of 3.9 ± 0.2

13.2.2 A Critical Surface Density

It is evident that the surface density of a system M/R2 is proportional to the
internal gravitational acceleration. This means that the critical acceleration
may be rewritten as a critical surface density:

Σm ≈ ao/G . (13.3)

If a system, such as a spiral galaxy has a surface density of matter greater
than Σm, then the internal accelerations are greater than ao, so the system
is in the Newtonian regime. In systems with Σ ≥ Σm (high surface bright-
ness or HSB galaxies) there should be a small discrepancy between the visible
and classical Newtonian dynamical mass within the optical disk. But in low
surface brightness (LSB) galaxies (Σ << Σm) there is a low internal accel-
eration, so the discrepancy between the visible and dynamical mass would
be large. By this argument Milgrom predicted, before the actual discovery of
a large population of LSB galaxies, that there should be a serious discrep-
ancy between the observable and dynamical mass within the luminous disk of
such systems– should they exist. They do exist, and this prediction has been
verified [23].

Moreover, spiral galaxies with a mean surface density near this limit –
HSB galaxies– would be, within the optical disk, in the Newtonian regime. So
one would expect that the rotation curve would decline in a near Keplerian
fashion to the asymptotic constant value. In LSB galaxies, with mean surface
density below Σm, the prediction is that rotation curves would rise to the
final asymptotic flat value. So there should be a general difference in rotation
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Fig. 13.2. The points show the observed 21 cm line rotation curves of a low sur-
face brightness galaxy, NGC 1560 and a high surface brightness galaxy, NGC 2903.
The dotted and dashed lines are the Newtonian rotation curves of the visible and
gaseous components of the disk and the solid line is the MOND rotation curve with
ao = 1.2 × 10−8 cm/s2– the value derived from the rotation curves of 10 nearby
galaxies [26]. Here the only free parameter is the mass-to-light ratio of the visible
component

curve shapes between LSB and HSB galaxies. In Fig. 13.2 I show the observed
rotation curves (points) of two galaxies, a LSB and HSB [26], where we see
exactly this trend. This general effect in observed rotation curves was pointed
out in [27].

It is well-known that rotationally supported Newtonian systems tend to
be unstable to global non-axisymmetric modes which lead to bar formation
and rapid heating of the system [28]. In the context of MOND, these systems
would be those with Σ > Σm, so this would suggest that Σm should appear
as an upper limit on the surface density of rotationally supported systems.
This critical surface density is 0.2 g/cm2 or 860 M�/pc2. A more appropriate
value of the mean surface density within an effective radius would be Σm/2π
or 140 M�/pc2, and, taking M/Lb ≈ 2, this would correspond to a surface
brightness of about 22 mag/arc sec2. There is such an observed upper limit on
the mean surface brightness of spiral galaxies and this is known as Freeman’s
law [29]. The existence of such a limit becomes understandable in the context
of MOND.
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13.2.3 Pressure-supported Systems

Of course, spiral galaxies are rotationally supported. But there other galaxies,
elliptical galaxies, which are pressure supported– i.e. they are held up against
gravity by the random motion of the stars. There are numerous other exam-
ples of pressure-supported systems such as globular clusters and clusters of
galaxies, and often the observable components of these systems have a veloc-
ity dispersion (or temperature) that does not vary much with position; i.e.
they are near “isothermal”. With Newtonian dynamics, pressure-supported
systems that are nearly isothermal have infinite extent. But in the context of
MOND it is straightforward to demonstrate that such isothermal systems are
finite with the density at large radii falling roughly like 1/r4 [30].

The equation of hydrostatic equilibrium for an isotropic, isothermal system
reads

σr
2 dρ

dr
= −ρg (13.4)

where, in the limit of low accelerations g =
√
GMao/r. Here σr is the radial

velocity dispersion and ρ is the mass density. It then follows immediately that,
in this MOND limit,

σ4
r = GMao

(d ln(ρ)
d ln(r)

)−2

. (13.5)

Thus, there exists a mass-velocity dispersion relation of the form

(M/1011M�) ≈ (σr/100 kms−1)4

which is similar to the observed Faber-Jackson relation (luminosity-velocity
dispersion relation) for elliptical galaxies [31]. This means that a MOND near-
isothermal sphere with a velocity dispersion on the order of 100 km/s will
always have a galactic mass. This is not true of Newtonian pressure-supported
objects. Because of the appearance of an additional dimensional constant, ao,
in the structure equation (13.4), MOND systems are much more constrained
than their Newtonian counterparts.

Any isolated system which is nearly isothermal will be a MOND object.
That is because a Newtonian isothermal system (with large internal acceler-
ations) is an object of infinite size and will always extend to the region of
low accelerations (< ao). At that point (re2 ≈ GM/ao), MOND intervenes
and the system will be truncated. This means that the internal acceleration
of any isolated isothermal system (σr2/re) is expected to be on the order of
or less than ao and that the mean surface density within re will typically be
Σm or less (there are low-density solutions for MOND isothermal spheres,
ρ << ao

2/Gσ2, with internal accelerations less than ao). It was pointed out
long ago that elliptical galaxies do appear to have a characteristic surface
brightness [32]. But the above arguments imply that the same should be true
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of any pressure supported, near-isothermal system, from globular clusters to
clusters of galaxies. Moreover, the same M − σ relation (13.5) should apply
to all such systems, albeit with considerable scatter due to deviations from a
strictly isotropic, isothermal velocity field [33].

Most luminous elliptical galaxies are high surface brightness objects which
would imply a surface density greater than the MOND limit. This suggests
that luminous elliptical galaxies should be essentially Newtonian objects, and,
viewed in the traditional way, should evidence little need for dark matter
within the effective (or half-light) radius. This does seem to be the case as
demonstrated by dynamical studies using planetary nebulae as kinematic trac-
ers [34, 35].

13.2.4 Rotation Curves of Spiral Galaxies

Perhaps the most impressive observational success of MOND is the prediction
of the form of galaxy rotation curves from the observed distribution of bary-
onic matter, stars and gas. Basically, one takes the mean radial distribution of
light in a spiral galaxy as a precise tracer of the luminous mass, includes the
observed radial dependence of neutral hydrogen (increased by 30% to account
for the primordial helium) and assumes all of this is in a thin disk (with the
occasional exception of a central bulge component). One then solves the stan-
dard Poisson equation to determine the Newtonian force, applies the MOND
formula (1 with a fixed value of a0) to determine the true gravitational force
and calculates the predicted rotation curve. The mass-to-light ratio of the
visible component is adjusted to achieve the best fit to the observed rotation
curve.

The results are spectacular considering that this is a one-parameter fit.
The solid curves in Fig. 13.2 are the results of such a procedure applied to a
LSB and HSB galaxy; this has been done for about 100 galaxies. The fitted
M/L values are not only reasonable, but demonstrate the same trend with
colour that is implied by population synthesis models as we see in Fig. 13.3
[25, 36].

Here I wish to emphasise another observed aspect of galaxy rotation
curves– a point that has been made, in particular, by Sancisi [37]. For many
objects, the detailed rotation curve appears to be extremely sensitive to the
distribution observable matter, even in LSB galaxies where, in the standard
interpretation, dark matter overwhelmingly dominates within the optical im-
age. There are numerous examples of this– e.g. the LSB galaxy shown in
Fig. 13.2 where we see that the total rotation curve reflects the Newtonian
rotation curve of the gaseous component in detail. Another example [37, 38]
is the dwarf galaxy, NGC 3657. Figure 13.4 shows the surface densities of the
baryonic components, stars and gas, compared to the observed rotation curve.
Again the dotted and dashed curves are the Newtonian rotation curves of the
stellar and gaseous components and the solid curve is the resulting MOND
rotation curve. The agreement with observations is obvious.
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Fig. 13.3. MOND fitted mass-to-light ratios for the UMa spirals [25] in the B-band
(top) and the K’-band (bottom) plotted against B-V (blue minus visual) colour
index. The solid lines show predictions from populations synthesis models [36]

For this galaxy, there is evidence from the rotation curve of a central cusp
in the density distribution– and, indeed, the cusp is seen in the light distri-
bution. In cases where there is no conspicuous cusp in the light distribution,
there is no kinematic evidence for a cusp in the rotation curve. This would
appear to make the entire discussion about cusps in halos somewhat irrele-
vant. But equally striking in this case is the gradual rise in the rotation curve
at large radii. This rise is clearly related to the increasing dominance of the
gaseous component in the outer regions. The point is clear: the rotation curve
reflects the global distribution of baryonic matter, even in the presence of a
large discrepancy between the visible and Newtonian dynamical mass. This is
entirely understandable (and predicted) in the context of modified gravity in
the form of MOND (what you see is all there is), but remains mysterious in
the context of dark matter

13.2.5 Clusters of Galaxies: A Phenomenological
Problem for MOND?

It has been known for 70 years [11] that clusters of galaxies exhibit a significant
discrepancy between the Newtonian dynamical mass and the observable mass,
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Fig. 13.4. The upper panel is the logarithm of the surface density of the gaseous
and stellar components of NGC 3657. The lower panel shows the observed rotation
curve (points), the Newtonian rotation curves for the stellar (dashed) and gaseous
(dotted) components as well as the MOND rotation curve (solid) [37, 38]

although the subsequent discovery of hot X-ray emitting gas goes some way
in alleviating the original discrepancy. For an isothermal sphere of hot gas at
temperature T, the Newtonian dynamical mass within radius ro, calculated
from the equation of hydrostatic equilibrium, is

Mn =
ro
G

kT

m

(d ln(ρ)
d ln(r)

)
, (13.6)

where m is the mean atomic mass and the logarithmic density gradient is
evaluated at ro. This dynamical mass turns out to be typically about a factor
of 4 or 5 larger than the observed mass in hot gas and in the stellar content
of the galaxies (see Fig. 13.5, left [39]).
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Fig. 13.5. Left: the Newtonian dynamical mass of clusters of galaxies within an
observed cutoff radius (rout) vs. the total observable mass in 93 X-ray emitting
clusters of galaxies. The solid line corresponds to Mdyn = Mobs (no discrepancy).
Right: the MOND dynamical mass within rout vs. the total observable mass for the
same X-ray emitting clusters [39]

With MOND, the dynamical mass (13.5) is given by

Mm = (Gao)
−1
(kT

m

)2(d ln(ρ)
d ln(r)

)2

, (13.7)

and, using the same value of ao determined from nearby galaxy rotation
curves, turns out to be, on average, a factor of two larger than the observed
mass (Fig. 13.5, right). The discrepancy is reduced but still present. This could
be interpreted as a failure [40], or one could say that MOND predicts that the
mass budget of clusters is not yet complete and that there is more mass to be
detected [39]. The cluster missing mass could, e.g. be in neutrinos of mass 1.5
to 2 eV [41], or in “soft bosons” with a large de Broglie wavelength [42], or
simply in heretofore undetected baryonic matter. It would have certainly been
a falsification of MOND had the predicted mass turned out to be typically
less than the observed mass in hot gas and stars.

13.3 Relativistic MOND

MOND not only allows the form of rotation curves to be precisely predicted
from the distribution of observable matter, but it also explains certain sys-
tematic aspects of the photometry and kinematics of galaxies and clusters:
the presence of a preferred surface density in spiral galaxies and ellipticals–
the so-called Freeman and Fish laws; the fact that pressure-supported nearly
isothermal systems ranging from molecular clouds to clusters of galaxies are
characterised by a specific internal acceleration, ao [21]; the existence of a TF
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relation with small scatter– specifically a correlation between the baryonic
mass and the asymptotically flat rotation velocity of the form v4 ∝ M ; the
Faber-Jackson relation for ellipticals, and with more detailed modelling, the
Fundamental Plane [33]; not only the magnitude of the discrepancy in clus-
ters of galaxies but also the fact that mass-velocity dispersion relation which
applies to elliptical galaxies (13.5) extends to clusters (the mass-temperature
relation). And it accomplishes all of this with a single new parameter with
units of acceleration– a parameter determined from galaxy rotation curves
which is within an order of magnitude of the cosmologically significant value
of cHo. This is why several of us believe that, on an epistemological level,
MOND is more successful than dark matter. Further, many of these system-
atic aspects of bound systems do not have any obvious connection to what has
been traditionally called the “dark matter problem”. This capacity to connect
seemingly unrelated points is the hallmark of a good theory. However, as I
argued in the Introduction, MOND will never be entirely credible to most
astronomers and physicists until it makes some contact with more familiar
physics–until there is an underlying and understandable physical mechanism
for MOND phenomenology. Below I consider that mechanism in terms of pos-
sible modifications of the theory of gravity.

13.3.1 Steps to TeVeS

TeVeS (tensor-vector-scalar) theory [22] is a relativistic theory yielding MOND
phenomenology in the appropriate limit. Of course, I do not need to belabour
the advantages of a relativistic theory. It allows one to address a number of
issues on which MOND is silent: gravitational lensing, cosmology, structure
formation, anisotropies in the CMB. The theory is complicated– consider-
ably more complicated than GR– in that involves additional dynamical el-
ements and is characterised by three additional free parameters and a free
function– i.e. a function that is not specified by any a priori considerations
but may be adjusted to achieved the desired result. In this sense, TeVeS, like
MOND itself, is a phenomenologically driven theory. It is entirely “bottom-
up” and thereby differs from what is normally done in gravity theory or
cosmology.

As the name implies it is a multi-field theory; i.e. there are fields present
other than the usual tensor field gμν of GR. It appears that any viable the-
ory of MOND as a modification of gravity must be a multi-field theory; no
theory based upon a single metric field can work [43]. In TeVeS, the MOND
phenomenology appears as a “fifth force” mediated by a scalar field. This fifth
force must be designed to fall as 1/r and dominate over the usual Newtonian
force when the total force is below a0 as shown in Fig. 13.6.

Now if we are proposing a fifth force, then that implies non-geodesic mo-
tion and one may naturally ask about the validity of the equivalence princi-
ple, even in its weak form expressing the universality of free fall (there are
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Fig. 13.6. MOND phenomenology as a result of multi-field modifications of gravity.
The dashed curve shows the log force resulting from a scalar field with a non-
standard Lagrangian as a function of log radius in units of the MOND radius rM =√

GM/a0. The solid line is the usual Einstein-Newton force

strong experimental constraints on the composition independence of acceler-
ation in a gravitational field). The weak version of the equivalence principle
can be preserved if there is a specific form of coupling between the scalar
field a matter– one in which the scalar couples to matter jointly with the
gravitational or Einstein metric. This allows for the definition of a physical
metric, g̃μν that is distinct from the Einstein metric. In the simplest sort
of joint coupling the physical metric is conformally related to the Einstein
metric, i.e.

g̃μν = f(φ)gμν . (13.8)

This is the case in traditional scalar-tensor theories such as the Brans-Dicke
theory [44]. So the theory remains a metric theory, but particle and photons
follow geodesics of the physical metric and not the Einstein metric. Of course,
a great part of the beauty of GR is that the gravitational metric is the metric
of a 4-D space time with Lorentzian signature– gravitational geometry is
physical geometry. It is beautiful, but the world doesn’t have to be that way.

Another ingredient is necessary if the scalar field is to produce MOND
phenomenology. In standard scalar-tensor theory, the scalar field Lagrangian is

Ls =
1
2
φ,αφ

,α . (13.9)

Forming the action from this Lagrangian (and the joint coupling with gμν to
matter) and taking the condition of stationary action leads, in the weak field
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limit, to the usual Poisson equation for φ. In other words, the scalar force
about a point mass falls as 1/r2 as in Brans-Dicke theory. Therefore, MOND
requires a non-standard scalar field Lagrangian; for example, something like

Ls =
1

2l2
F (l2φ,αφ,α) (13.10)

where F (X) is an, as yet, unspecified function of the usual scalar invariant
and l is a length scale on the order of the present Hubble scale (≈ c/H0).
Bekenstein refers to this as aquadratic Lagrangian theory or AQUAL. The
condition of stationary action then leads to a scalar field equation that, in the
weak field limit, is

∇ · [μ(|∇φ|/a0)∇φ] = 4πGρ (13.11)

where a0 = c2/l and μ = dF (X)/dX . This we recognise as the Bekenstein-
Milgrom field equation [45] which produces MOND like phenomenology if
μ(y) = y when y < 1 or F (X) = 2

3X
3
2 . Here, however, we should recall

that φ is not the total gravitational field but on the scalar component of a
two-field theory. Another phenomenological requirement on the free function
is that F (X) → ωX in the limit where X >> 1 (or ∇φ > a0). That is to
say, the scalar field Lagrangian becomes standard in the limit of large field
gradients; the theory becomes equivalent to Brans-Dicke theory in this limit.
This guarantees precise 1/r2 attraction in the inner solar system, but, to be
consistent with post-Newtonian constraints, it is necessary that ω > 104.

Looking at the form of F required for MOND phenomenology, we see an
immediate problem with respect to cosmology. In the limit of a homogeneous
Universe, where ∇φ → 0 and the cosmic time derivative, φ̇, dominates the
invariant, i.e. X < 0. This means that the form of the free function must
change in this limit (this is a problem which persists in TeVeS). But there is
another more pressing problem which was immediately noticed by Bekenstein
and Milgrom. In the MOND limit, small disturbances in the scalar field, scalar
waves, propagate acausally; i.e. Vs =

√
2c in directions parallel to ∇φ. This is

unacceptable; a physically viable theory should avoid the paradoxes resulting
from acausal propagation.

The superluminal propagation (or tachyon) problem led Bekenstein to pro-
pose a second non-standard scalar-tensor theory for MOND– phase-coupling
gravitation or PCG [46]. Here, the scalar field is taken to be complex, χ = qeiφ

with the standard Lagrangian,

LS =
1
2
[q,αq,α + q2φ,αφ

,α + 2V (q)] (13.12)

where V (q) is the potential function of the scalar field. The non-standard
aspect is that only the phase couples to matter in the usual conformal way,

g̃μν = e−ηφgμν . (13.13)
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This leads (weak field limit) to the field equation,

∇ · [q2∇φ] =
8πGρ

c2
. (13.14)

So now we see that q2 replaces the usual MOND interpolating function μ, but
now q is given by a second scalar field equation,

q,α;α = qφ,αφ
,α + V ′(q) . (13.15)

That is to say, the relation between q2 and ∇φ is now differential and not
algebraic as in AQUAL theory. Bekenstein demonstrated that if V (q) = −Aq6

(a negative sextic potential) then the predicted phenomenology is basically
that of MOND on a galactic scale.

Obviously the property dV/dq < 0 cannot apply for all q because this
would lead to instability of the vacuum, but there is a more serious problem:
By a suitable redefinition of the fields, it may be shown that, in the limit of
very weak coupling (η << 1) the term on the left-hand side of (13.15) may
be neglected–that is to say, we are left with only the right-hand side and the
relation between q2 and ∇φ once again becomes algebraic as in AQUAL. In
other words, PCG approaches AQUAL in the limit of very weak coupling. This
suggests that PCG may suffer from a similar ailment as AQUAL; indeed, there
is a problem, but it appears as the absence of a stable background solution
rather than superluminal propagation [47]. But I only mention this because I
want to emphasise that the weak coupling limit of PCG is equivalent to the
aquadratic theory; this turns out to be a significant aspect of TeVeS.

At about the same time it was realized that there is a serious phenomeno-
logical problem with AQUAL or PCG or any scalar-tensor theory in which
the the relation between the physical and gravitational metrics is conformal
as in (8 or 13). That is, such a theory would predict no enhanced deflection
of photons due to the presence of the scalar field [48, 49]. Recall that photons
and other relativistic particles follow null geodesics of the physical metric.
These are given by the condition that

dτ̃2 = −g̃μνdx
μdxν = 0 . (13.16)

Now given the conformal relation between the two metrics (13.8) you don’t
have to be a mathematical genius to see that dτ̃ = 0 corresponds to dτ = 0;
i.e. null geodesics of the two metrics coincide which means that photons also
follow geodesics of the gravitational metric where the scalar field doesn’t enter
(except very weakly as an additional source). Hence the scalar field does not
influence the motion of photons!

This has a major observational consequence: It would imply that, for a
massive cluster of galaxies, the Newtonian mass one would determine from
the kinematics of galaxies (non-relativistic particles) via the virial theorem
should be much greater than the mass one would determine from gravitational
deflection of photons (relativistic particles). This is, emphatically, not the



390 R. Sanders

case [48]. The lensing contradiction is a severe blow to scalar-tensor theories
of MOND, at least for those with a conformal coupling.

An obvious solution to this problem is to consider a non-conformal rela-
tionship between the Einstein and physical metrics,

g̃μν = gμνe
−ηφ − (eηφ − e−ηφ)AμAν (13.17)

where now Aμ is a normalized vector field, i.e. AμAμ = −1 [50]. Basically, the
conformal relation transforms the gravitational geometry by stretching or con-
tracting the 4-D space isotropically but in a space-time dependent way. This
disformal transformation, (13.17), picks out certain directions for additional
stretching or contracting. Because we would like space in the cosmological
frame to be isotropic (the Cosmological Principle) we should somehow ar-
range for the vector to point in the time direction in the cosmological frame,
which then becomes a preferred frame. In the spirit of the ancient stratified
theories [50], one may propose an a priori non-dynamical vector field postu-
lated to have this property. This may be combined with an AQUAL theory to
provide MOND phenomenology with enhanced gravitational lensing [51]; in
fact, with the particular transformation given by (13.17) one can show that
the relation between the total weak field force and the deflection of photons is
the same as it is in GR. Hence relativistic and non-relativistic particles would
both feel the same weak-field force.

The problem with this initial theory is that the non-dynamical vector field
quite explicitly violates the principle of General Covariance making it impos-
sible to define a conserved energy-momentum tensor (this has been known for
some time [52]). This problem led Bekenstein to endow the vector field with
its own dynamics, and, hence, to TeVeS.

13.3.2 The Structure of TeVeS

As the name implies, the theory is built from three fields.
a) The tensor: This is the usual Einstein metric that we are all familiar

with. It’s dynamics are given by the standard Einstein-Hilbert action of GR:

ST =
1

16πG

∫
R
√
−gd4x . (13.18)

It is necessary that the tensor should be the Einstein metric because we want
the theory to approach GR quite precisely in the appropriate strong field
limits.

b) The scalar: We want the scalar, φ, to provide a long-range fifth force in
the limit of low field gradients Bekenstein takes the scalar field action to be

SS = − 1
16πG

∫
[
1
2
q2hαβφ,αφ

,β + l−2V (q)]
√
−gd4x . (13.19)

Here I have kept the notation of PCG because the action is, in fact, the weak
coupling, or AQUAL limit, of PCG where there is no explicit kinetic term for
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the field q. In other words, q behaves as a non-dynamical auxiliary field where
q2 will play the role of μ in the Bekenstein-Milgrom field equation (the fact
that this field is non-dynamical does not violate General Covariance because
it does not act directly upon particles). I use this bi-scalar notation because
I think it is important to realise that the auxiliary field could, in fact, be
dynamical. This, in some respects, provides a plausible interpretation of the
free function, V (q), as a potential (let’s call it a pseudo-potential for now).
As we see below, this can provide a basis for cosmological dark matter.

Another difference with standard scalar-tensor theory is that the invariant
hαβφ,αφ,β has replaced the usual scalar field invariant gαβφ,αφ,β where

hαβ = gαβ − AαAβ (13.20)

and A is the normalized vector field described below. Bekenstein has shown
that this simple replacement solves the superluminal propagation problem
of AQUAL theories of MOND. The speed of scalar waves turns out to be
precisely c.

c) The vector: The dynamical normalized vector field is necessary to pro-
vide the disformal transformation and the enhanced gravitational lensing.
Bekenstein chose to describe its dynamics through the action

SV =
K

32πG

∫
[FμνFμν − 2(

λ

K
)(AμAμ + 1)

√
−gd4x (13.21)

where Fμν is the electromagnetic-like anti-symmetric tensor constructed
from A

Fμν = Aν;μ −Aμ;ν , (13.22)

and λ is a Lagrangian multiplier function which enforces the normalisation
condition AμA

μ = −1. K is a new parameter which determines the strength
of the vector field coupling.

All of this is combined with the particle action

SP = −mc

∫
(−g̃μν

dxμ

dp

dxν

dp
)

1
2 dp (13.23)

where g̃μν is the physical metric disformally related to the Einstein metric as
in (13.17). This guarantees that the deflection of photons is given by

δθ =
2
c2

∫
f⊥dl (13.24)

where the integral is over the line-of-sight and f⊥ is the perpendicular com-
ponent of the total weak-field force, Newtonian and scalar.

The free parameters of the theory are η, the scalar field coupling, K the
vector field coupling, and l the characteristic length scale determining the
MOND acceleration scale (a0 = c2/l). It can be shown that, as the parameters
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η and K approach zero, the theory reduces to GR, as it should do. The free
function is V (q) or the pseudo-potential of the auxiliary q field. I could have
absorbed the length scale l into V (q) but, following Bekenstein, I choose to
express it explicitly in order to render V (q) unitless.

In the weak-field static limit, the scalar field equation is of the Bekenstein-
Milgrom form:

∇ · (μfs) = 4πGρ (13.25)

where, in my notation, the scalar force is given by fs = ηc2∇φ and μ = q2/2η2.
Making use of these expressions, we may show that the MOND interpolating
function is then given by the algebraic relation,

dV (μ)
dμ

= − fs
2

a0
2

= −X (13.26)

where a0 = c2/l. This, of course, necessitates V ′(μ) < 0 in the static domain.
Now, to obtain MOND phenomenology, it must be the case that μ(X) =√

X in the low acceleration limit. For example, V (μ) = − 1
3μ

3 would work
(recalling the relation between μ and q above, we see that this gives rise to
the negative sextic potential in PCG). But this leaves us with the old problem
of extending AQUAL into the cosmological regime where X < 1.

Bekenstein chose to solve this problem by taking a free function that pro-
vides two separate branches for μ(X)– one for static mass concentrations,
where the spatial gradients of φ dominate, and one for the homogeneous evolv-
ing Universe where the temporal derivative dominates. Specifically,

Fig. 13.7. Bekenstein’s trial free function shown, μ(X) (solid curve) where X is
defined as η2l2φ,αφ,α. There are two discontinuous branches for cosmology (X < 0)
and for quasi-static mass concentrations (X > 0). The dashed curve shows one
possibility for avoiding the discontinuity (13.28)
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Fig. 13.8. The pseudo-potential (V (μ)) corresponding to the μ(X) shown in
Fig. 13.7

X =
1
4
μ2(η2μ− 2)2(1− η2μ)−1 (13.27)

(η2 appears because my definition of μ differs from Bekenstein’s). This two
branch, μ(X), is shown in Fig. 13.7, where now we are defining X more gen-
erally as X = η2l2φ,αφ

,α The corresponding pseudo-potential, V (μ), is shown
in Fig. 13.8.

If we interpret V (μ) as the potential of an implicitly dynamical field, it
is certainly a rather curious-looking one– with the infinite pit at η2μ = 1. It
also illustrates the peculiar aspect of the two-branch form of μ. For cosmolog-
ical solutions, η2μ = 2 is an attractor; i.e. the μ field seeks the point where
dV/dμ = 0 [53]. However, on the outskirts of galaxies η2μ → 0 as it must to
provide the 1/r scalar force. So somehow, in progressing from the galaxies to
the cosmological background η2μ must jump from 0 to 2 apparently discontin-
uously (photons propagating in a cosmological background also have to make
this leap). This problem indicates that such a two-branch μ(X) may not be
appropriate, but more on this below.

13.4 TeVeS: Successes, Issues and Modifications

13.4.1 Successes of TeVeS

The theory is an important development because it solves several of the out-
standing problems of earlier attempts:

1) While providing for MOND phenomenology in the form of the old non-
relativistic Bekenstein-Milgrom theory, it also allows for enhanced gravita-
tional lensing. It does this in the context of a proper covariant theory, albeit
by construction– by taking the particular disformal relation between the phys-
ical and gravitational metrics given by (13.17). This aspect of the theory has
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favourably tested on a sample of observed strong lenses [54], although there
are several case with unreasonable implied mass-to-light ratios.

2) It has been shown [22, 58] that, for TeVeS, the static post-Newtonian effects
are identical to those of GR; that is to say, the Eddington-Robertson post-
Newtonian parameters are γ = β = 1 as in GR. This provides consistency
with a range of Solar System gravity tests such as light deflection and radar
echo delay.

3) Scalar waves propagate causally (vs ≤ c). This is true because the new
scalar field invariant hαβφ,αφ,β (hαβ is a new tensor built from the Ein-
stein metric and the vector field (13.20)) replaces the standard invariant in
the scalar field Lagrangian (13.9). This is a major improvement over the old
AQUAL theory, but also one which relies upon the presence of the vector field.

4) Gravitational waves propagate causally if φ > 0. One can show [22] that
the speed of the standard tensor waves is given by Vg = ce−ηφ. This means
that the cosmology must provide φ > 0 in a natural way. Moreover, there is a
prediction here which is possibly testable, and that is Vg < c. If an event, such
as a gamma-ray burst, also produces gravitational radiation (as is likely), the
gravitational waves should arrive somewhat later than the gamma rays.

5) The theory allows for standard FRW cosmology and, at least in the lin-
ear regime, for a MONDian calculation of structure formation [53]. Moreover,
there is an evolving dark energy (quintessence) which is coupled to the back-
ground baryon density, offering a possible solution to the near coincidence of
these components at the present epoch. This comes about through the pres-
ence of V (μ) as a negative pressure fluid in the Friedmann equations. The
cosmological value of the dark energy density, V (μ), corresponds to the mini-
mum of an effective potential Veff = V (μ)+B(ρτ)/μ where B is a function of
the product of cosmic time τ and the baryonic mass density ρ (it is identical
in this sense to PCG in a cosmological context [55]).

13.4.2 Remaining Issues

In spite of these important successes there are a number of problems that the
theory is yet to confront:

1) The discontinuous μ(X). The two discontinuous branches (Fig. 13.7)– one
for cosmology and one for quasi-static mass concentrations– appears awk-
ward, particularly if the free-function is interpreted as a potential of the μ
field. Moreover, this presents very practical problems for gravitational lensing
and calculation of structure formation into the non-linear regime. But more
seriously, it appears that such two branch μ may be an intrinsic aspect of a
theory with the structure of TeVeS. One could propose (as in [56]) that the
space-like branch of μ is simply reversed at the at the μ = 0 axis (see dotted
line in Fig. 13.7), so, instead of (13.27), Bekenstein’s free function could be
expressed as
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X = ± 3μ2

1− η2μ
. (13.28)

However, the pseudo-potential, V (μ), would then also be double valued which
would appear distinctly unphysical if this is really to be identified with the
potential of a implicitly dynamical scalar μ (or q). In my opinion, the only
solution to this problem is to alter the structure of the theory (see below).

2) Even given a μ(X) with two branches, the separation between quasi-static
and cosmological phenomena is artificial. Equation (13.26), which provides
the relation between the scalar field gradient and μ, should also contain the
cosmic time derivative of the scalar field because this is likely to be of the
same order as dV/dμ; i.e. (13.26) should read

dV

dμ
= − fs

2

a0
2

+
η2l2φ̇2

c2
. (13.29)

Therefore the free function, relevant to mass concentrations, may also be
thought of as an evolving effective potential (this can actually be an advantage
which I make use of below).

3) This is a preferred frame theory that violates the Lorentz invariance of
gravitational phenomena. This is because of the cosmic vector field A. In the
cosmic frame, only the time component of A is non-zero but for frames in
relative motion with respect to the CMB spatial components also develop
non-zero values, and this has a real effect on particle dynamics. In the Solar
System for example, there should be gravitational ether drift effects, such as
a polarisation of the earth-moon orbit along the direction of w, the velocity
vector with respect to the CMB. Such effects, in conservative theories, are
quantified by two post-Newtonian parameters [57], α1 and α2, which enter
the effective Lagrangian of an N-body system as the coefficients of terms
containing v ·w/c2 where v is the velocity with respect to the center-of-mass
of the N-body system. These parameters are experimentally constrained; for
example, α1 < 10−4 on the basis of Lunar Laser Ranging [59].

It is important to determine predicted values of α1 and α2 for TeVeS.
A reasonable guess is that these post-Newtonian parameters will approach
zero as the free parameters of the theory, η and K approach zero [61]. That
is because in this limit the theory approaches GR, and in GR there are no
preferred frame effects. Whether or not the resulting constraints on η and K
are consistent with other aspects of Solar System and galaxy phenomenology
remains to be seen.

4) In the outer solar system the force is not precisely inverse square. For
example, in the context of Bekenstein’s free function, the non-inverse square
component of the force is shown, as a function of radius, in Fig. 13.9 for two
different values of the scalar coupling strength, η. Constraints from planetary
motion are shown by the upper limits [61]. Such a deviation, at some level, is
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Fig. 13.9. The dashed curve is the log of the the total force (ft = fs + fN ), in
units of 10−8 cm/s2 plotted against the log of the radial distance from the sun in
astronomical units for TeVeS. The dotted curve is the anomalous force (the non-
inverse square force) for Bekenstein’s initial choice of free function with η = 0.01.
The long dashed curve is the same but with η = 0.1. Observed constraints on the
non-inverse square part of the acceleration are (left to right): from the precession
of perihelion of Mercury, and of Icarus, from variation of Kepler’s constant between
Earth and Mars, between inner planets and Jupiter, Uranus or Neptune, respectively.
The horizontal bar is the Pioneer anomaly range. From reference [62]

an aspect of any multi-field theory of MOND [51], and it may be a problem
or it may be a blessing. A non-inverse square component of the force, in the
form of a constant acceleration, is indicated by Doppler ranging to both the
Pioneer spacecrafts (indicated by the horizontal bar in Fig. 13.8) [60]. If this
effect is confirmed, it would be a major discovery, indicating that gravity is
not what we think it is beyond the inner solar system.

5) As I mentioned in the Introduction, there is compelling evidence for cos-
mological dark matter– a pressureless fluid which appears to affect early large
scale structure formation (evident in the CMB anisotropies) and the more
recent expansion history of the Universe (evident in the SNIa results). The
weight of this evidence implies that a proper theory of MOND should at least
simulate the cosmological effects of the apparent dark matter, again not an
evident aspect of TeVeS.

In a general sense, the theory, at present, is intricate and misses a certain
conceptual simplicity. There are several loose threads which one might hope a
theory of MOND to tie up. For example, the MOND acceleration parameter,
a0, is put in by hand, as an effective length scale l; the observational fact
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that a0 ≈ cH0 remains coincidental. This seems unfortunate because this
coincidence suggests that MOND results from the effect of cosmology on local
particle dynamics, and, in the theory as it now stands, no such connection is
evident.

Finally, by mentioning these problems, I do not wish to imply that TeVeS
is fundamentally flawed, but that it is not yet the theory in final form. In this
procedure, building up from the bottom, the approach to the final theory is
incremental.

13.4.3 Variations on a Theme: Biscalar-tensor-vector Theory

The motivation behind this variation is to use the basic elements of TeVeS in
order to construct a cosmologically effective theory of MOND. The goals are
to reconcile the galaxy scale success of MOND with the cosmological evidence
for CDM and to provide a cosmological basis for a0 [42].

There are two essential differences with TeVeS in original form: First,
the auxiliary field q is made explicitly dynamical as in PCG. This is done
by introducing a kinetic term for q in the scalar action (13.19), i.e. q,αq

,α.
Secondly, one makes use of the preferred frame to separate the spatial and time
derivatives of the matter coupling scalar field φ at the level of the Lagrangian.
Basically, this is done by defining new scalar field invariants. If we take the
usual invariant to be I = gαβφ,αφ,β and define J = AαAβφ,αφ,β , K = J + I,
then we can readily see that J is just the square of the time derivative in the
preferred cosmological frame (φ̇2) and K is the spatial derivative squared in
that frame (∇φ · ∇φ). The scalar field Lagrangian is then taken to be

Ls =
1
2
[q,αq,α + h(q)K − f(q)J + 2V (q)] . (13.30)

So, separate functions of q multiply the spatial and temporal gradients of φ
in the cosmological frame. This means that the potential for q becomes an
effective potential involving the cosmic time derivative, φ̇ for both the homo-
geneous cosmology and for quasi-static mass concentrations. Indeed, one can
show, given certain very general conditions on the free functions, q at a large
distance from a mass concentration approaches its cosmological value. There
is smooth transition between mass concentrations and cosmology. Moreover, if
I take h(q) ≈ q2, f(q) ≈ q6 and a simple quadratic bare potential V (q) ≈ Bq2,
I obtain a cosmological realisation of Bekenstein’s PCG with a negative sex-
tic potential [46] but where the coefficient in the potential, and hence a0, is
identified with the cosmic dφ/dt.

There are two additional advantages of making q dynamical. First of all, as
the q field settles to the evolving potential minimum, oscillations of this field
about that minimum inevitably develop. If the bare potential has a quadratic
form, then these oscillations constitute CDM in the form of “soft bosons”
[63]. Depending upon the parameters of the theory, the de Broglie wavelength
of these bosons may be so large that this dark matter does not cluster on
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Fig. 13.10. The Newtonian (dashed curve) and scalar (solid curves) force in the
Solar System in the context of the biscalar theory. The different curves correspond
to different values of scalar coupling constant η. This should be compared with
Fig. 13.6 which shows the Newtonian and scalar forces for TeVeS with the initial
free function

the scale of galaxies (but possibly on the scale of clusters). A cosmological
effective theory of MOND produces cosmological CDM for free.

A second advantage is that appropriately chosen free functions can repro-
duce the Pioneer anomaly in the outer Solar System– both the magnitude
(≈ 8 × 10−9 cm/s2) and the form– constant beyond 20 AU (see Fig. 13.10).
It does this while being consistent with the form of galaxy rotation curves
[61]. Of course the presence of three free functions appear to give the theory
considerable arbitrariness, but, in fact, the form of these functions is strongly
constrained by Solar System, galaxy and cosmological phenomenology.

Many other modifications of TeVeS are possible. For example, it may only
be necessary to make the auxiliary field q explicitly dynamical and choose a
more appropriate form of the free function. The number of alternative theories
is likely to be severely restricted by the demands imposed by observations–
ranging from the solar system, to galaxies, to clusters, to gravitational lensing,
to cosmology. The hope is that the number of survivors is not less than one.

13.5 Conclusions

Here I have outlined the attempts that have been made to define modifi-
cations of gravity that may underly the highly successful empirically-based
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MOND, proposed by Milgrom as an alternative to dark matter in bound self-
gravitating systems. These attempts lead inevitably to a multi-field theory
of gravity– the Einstein metric to provide the phenomenology of GR in the
strong field limit, the scalar field to provide the MOND phenomenology most
apparent in the outskirts of galaxies and in low surface brightness systems,
and the vector field to provide a disformal relation between the Einstein and
physical metrics– necessary for the observed degree of gravitational lensing.
I re-emphasise that this process has been entirely driven by phenomenology
and the need to cure perceived pathologies; there remains no connection to
more a priori theoretical considerations or grand unifying principles such as
General Covariance or Gauge Invariance. It would, of course, be a dramatic
development if something like MOND were to emerge as a incidental conse-
quence of string theory or a higher dimensional description of the Universe,
but, in my opinion, this is unlikely. It is more probable that an empirically
based prescription, such as MOND, will point the way to the correct theory.

The coincidence between the critical acceleration and cH0 (or possibly the
cosmological constant) must be an essential clue. MOND must be described by
an effective theory; that is, the theory predicts this phenomenology only in a
cosmological context. The aspect, and apparent necessity, of a preferred frame
invites further speculation: Perhaps cosmology is described by a preferred
frame theory (there certainly is an observed preferred frame) with a long
range force mediated by a scalar field coupled to a dynamical vector field
as well as the gravitational metric. With the sort of bi-scalar Lagrangian
implied by TeVeS, the scalar coupling to matter becomes very weak in regions
of high field gradients (near mass concentrations). This protects the Solar
System from detectable preferred frame effects where the theory essentially
reduces to General Relativity. Because we live a region of high field gradients,
we are fooled into thinking that General Relativity is all there is. Only the
relatively recent observations of the outskirts of galaxies or objects of low
surface brightness (or perhaps the Pioneer anomaly) reveal that there may be
something more to gravity.

On the other hand, it may well be that we have been pursuing a mirage
with tensor-vector-scalar theories. Perhaps the basis of MOND lies, as Mil-
grom has argued, with modified particle action– modified inertia– rather than
modified gravity [64, 65]. For a classical relativist this distinction between
modified gravity and modified inertia is meaningless– in relativity, inertia and
gravity are two sides of the same coin; one may be transformed into another by
a change of frame. But perhaps in the limit of low accelerations, lower than the
fundamental cosmological acceleration cH0, that distinction is restored [66].

It is provocative that the Unruh radiation experienced by a uniformly ac-
celerating observer, changes its character at accelerations below c

√
Λ in a de

Sitter universe [65]. If the temperature difference between the accelerating
observer and the static observer in the de Sitter Universe is proportional to
inertia, then we derive an inertia-acceleration relation very similar to that
required by MOND [65]. At present this is all very speculative, but it presents
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the possibility that we may be going down a false path with attempted mod-
ifications of GR through the addition of extra fields.

In any case, the essential significance of TeVeS is not that it, at present,
constitutes the final theory of MOND. Rather, the theory provides a
counter-example to the often heard claim that MOND is not viable because
it has no covariant basis.
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Abstract. Scalar quintessence seems epicyclic because one can choose the potential
to reproduce any cosmology (I review the construction) and because the properties
of this scalar seem to raise more questions than they answer. This is why there has
been so much recent interest in modified gravity. I review the powerful theorem of
Ostrogradski which demonstrates that the only potentially stable, local modification
of general relativity is to make the Lagrangian an arbitrary function of the Ricci
scalar. Such a theory can certainly reproduce the current phase of cosmic acceleration
without Dark Energy. However, this explanation again seems epicyclic in that one
can construct a function of the Ricci scalar to support any cosmology (I give the
technique). Models of this form are also liable to problems in the way they couple
to matter, both in terms of matter’s impact upon them and in terms of the long
range gravitational force they predict. Because of these problems my own preference
for avoiding Dark Energy is to bypass Ostrogradski’s theorem by considering the
fully nonlocal effective action built up by quantum gravitational processes during
the epoch of primordial inflation.

14.1 Introduction

The case for alternate gravity is easily made. The best that can be done from
observing cosmic motions is to infer the metric gμν in some coordinate system.
From this one can reconstruct the Einstein tensor and then ask whether or not
general relativity predicts it in terms of the observed sources of stress-energy,

(
Rμν −

1
2
gμνR

)
rec

= 8πG
(
Tμν

)
obs

? (14.1)

One way of explaining any disagreement is by positing the existence of an
unobserved, “dark” component of the stress-energy tensor,

(
Tμν

)
dark
≡ 1

8πG

(
Rμν −

1
2
gμνR

)
rec
−
(
Tμν

)
obs

. (14.2)

This always works, but recent observations make it seem epicyclic.
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The theory of nucleosynthesis implies that no more than about 4% of the
energy density currently required to make general relativity agree with all
observations can consist of any material with which we are presently familiar
[1] — and only a fraction of this 4% is observed. Just to make general relativity
agree with the observed motions of galaxies and galactic clusters we must posit
that six times the mass of ordinary matter comes in the form of non-baryonic,
cold dark matter [2]. Although there are some plausible candidates for what
this might be, no Earth-bound laboratory has yet succeeded in detecting it.

I belong to the minority of physicists who feel that this factor of six already
strains credulity. Easing that strain is what led Milgrom to propose MOND
[3], which can be viewed as a phenomenological modification of gravity in the
regime of very small accelerations. There is an impressive amount of obser-
vational data in favor of this modification [4] — although see [5]. Bekenstein
has recently constructed a fully relativistic field theory [6] which reproduces
MOND, and a preliminary analysis of the resulting cosmology works better
than many experts thought possible [7].

However, the worst problem for conventional gravity comes on the largest
scales. To make general relativity agree with the Hubble plots of distant Type
Ia supernovae [8, 9, 10], with the power spectrum of anisotropies in the cosmic
microwave background [11] and with large scale structure surveys [12], one
must accept an additional component of “dark energy” that is about eighteen
times larger than that of ordinary matter. This would mean that 96% of the
current universe’s energy exists in forms which have so far only been detected
gravitationally! Even people who believe passionately in dark matter (and
hence accept the factor of six) find this factor of 6+18=24 difficult to swallow.
That is why there has been so much recent interest in modifying gravity to
make it predict observed cosmic phenomena without the need for dark energy,
and sometimes even without the need for dark matter.

I want to stress that the issue is one of plausibility. There is no problem
inventing field theories which give the required amount of dark energy. The
simplest way of doing it is with a minimally coupled scalar [13, 14],

L = −1
2
∂μϕ∂νg

μν√−g − V (ϕ)
√
−g . (14.3)

The usual procedure is to begin with a scalar potential V (ϕ) and work out
the cosmology, but it is easy to start with whatever cosmological evolution is
desired and construct the potential which would support it. I will go through
the construction here, both to make the point and so that it can be used later.

On the largest scales the geometry of the universe can be described in
terms of a single function of time known as the scale factor a(t),

ds2 = −dt2 + a2(t)dx · dx . (14.4)

The logarithmic time derivative of this quantity gives the Hubble parameter,

H(t) ≡ ȧ

a
. (14.5)
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If we specialize to a solution ϕ0(t) of the scalar field equations which depends
only upon time, the two nontrivial Einstein equations are,

3H2 = 8πG
(1

2
ϕ̇2

0 + V (ϕ0)
)

, (14.6)

−2Ḣ − 3H2 = 8πG
(1

2
ϕ̇2

0 − V (ϕ0)
)

. (14.7)

Let us assume a(t) is known as an explicit function of time, and construct
ϕ0(t) and V (ϕ). By adding (14.6) and (14.7) we obtain,

− 2Ḣ = 8πGϕ̇2
0 . (14.8)

The weak energy condition implies Ḣ(t) ≤ 0 so we can take the square root
and integrate to solve for ϕ0(t),

ϕ0(t) = ϕI ±
∫ t

tI

dt′

√
−2Ḣ(t′)

8πG
. (14.9)

One can choose ϕI and the sign freely.
Because the integrand in (14.9) is always positive, the function ϕ0(t) is

monotonic. This means we can invert to solve for time as a function of ϕ0.
Let us call the inverse function T (ϕ),

ψ = ϕ0

(
T (ψ)

)
. (14.10)

By subtracting (14.7) from (14.6) we obtain a relation for the scalar potential
as a function of time,

V =
1

8πG

(
Ḣ(t) + 3H2(t)

)
. (14.11)

The potential is determined as a function of the scalar by substituting the
inverse function (14.10),

V (ϕ) =
1

8πG

{
Ḣ
(
T (ϕ)

)
+ 3H2

(
T (ϕ)

)}
. (14.12)

This construction gives a scalar which supports any evolution a(t) (with
Ḣ(t)<0) all by itself. Should you wish to include some other, known compo-
nent of the stress-energy, simply add the energy density and pressure of this
component to the Einstein equations,

3H2 = 8πG
(1

2
ϕ̇2

0 + V (ϕ0) + ρknown

)
, (14.13)

−2Ḣ − 3H2 = 8πG
(1

2
ϕ̇2

0 − V (ϕ0) + pknown

)
. (14.14)
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Provided ρknown and pknown are known functions of either time or the scale
factor, the construction goes through as before.1

Using this method one can devise a new field ϕ(x) which will support any
cosmology with Ḣ(t) < 0. However, the introduction of such a “quintessence”
field raises a number of questions:

1. Where does ϕ reside in fundamental theory?
2. Why can’t ϕ couple to fields other than the metric? And if it does cou-

ple to other fields, why haven’t we detected its influence in Earth-bound
laboratories?

3. Why did ϕ come to dominate the stress-energy of the universe so recently
in cosmological time?

4. Why is the ϕ field so homogeneous?

When a phenomenological fix raises more questions than it answers people
are naturally drawn to investigate other fixes. One possibility is that general
relativity is not the correct theory of gravity on cosmological scales.

In this talk I shall review gravitational Lagrangians of the form,

L =
1

16πG

(
R + ΔR[g]

)√
−g , (14.15)

where ΔR[g] is some local scalar constructed from the curvature tensor and
possibly its covariant derivatives. Examples of such scalars are,

1
μ2

RαβRαβ ,
1
μ4

gμνR,μR,ν , μ2 sin
( 1
μ4

RαβρσRαβρσ

)
. (14.16)

I begin by reviewing a powerful no-go theorem which pervades and constrains
fundamental theory so completely that most people assume its consequence
without thinking. This is the theorem of Ostrogradski [18], who essentially
showed why Newton was right to suppose that the laws of physics involve
no more than two time derivatives of the fundamental dynamical variables.
The key consequence for our purposes is that the only viable form for the
functional ΔR[g] in (14.15) is an algebraic function of the undifferentiated
Ricci scalar,

ΔR[g] = f(R) . (14.17)

I review the Ostrogradski result in Sect. 14.2, and hopefully immunize you
against some common misconceptions about it in Sect. 14.3. In Sect. 14.4
I explain why f(R) theories do not contradict Ostrogradski’s result. I also
demonstrate that, in the absence of matter, f(R) theories are equivalent to
ordinary gravity, with f(R) = 0, plus a minimally coupled scalar of the form
(14.3). Then I use the construction given above to show how one can choose
f(R) to enforce an arbitrary cosmology. This establishes that an f(R) can be

1 This construction seems to be due to Ratra and Peebles [14]. Recent examples
of its use include [15, 16, 17].
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found to support any desired cosmology. In Sect. 14.5 I discuss problems asso-
ciated with the particular choice function f(R) = −μ

4

R . Section 14.6 presents
conclusions.

14.2 The Theorem of Ostrogradski

Ostrogradski’s result is that there is a linear instability in the Hamiltonians as-
sociated with Lagrangians which depend upon more than one time derivative
in such a way that the dependence cannot be eliminated by partial integration
[18]. The result is so general that I can simplify the discussion by presenting
it in the context of a single, one dimensional point particle whose position as
a function of time is q(t). First I will review the way the Hamiltonian is con-
structed for the usual case in which the Lagrangian involves no higher than
first time derivatives. Then I present Ostrogradski’s construction for the case
in which the Lagrangian involves second time derivatives. And the section
closes with the generalization to N time derivatives.

In the usual case of L = L(q, q̇), the Euler-Lagrange equation is,

∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (14.18)

The assumption that ∂L
∂q̇ depends upon q̇ is known as nondegeneracy. If the

Lagrangian is nondegenerate we can write (14.18) in the form Newton assumed
so long ago for the laws of physics,

q̈ = F(q, q̇) =⇒ q(t) = Q(t, q0, q̇0) . (14.19)

From this form it is apparent that solutions depend upon two pieces of initial
value data: q0 = q(0) and q̇0 = q̇(0).

The fact that solutions require two pieces of initial value data means that
there must be two canonical coordinates, Q and P . They are traditionally
taken to be,

Q ≡ q and P ≡ ∂L

∂q̇
. (14.20)

The assumption of nondegeneracy is that we can invert the phase space trans-
formation (14.20) to solve for q̇ in terms of Q and P . That is, there exists a
function v(Q,P ) such that,

∂L

∂q̇

∣∣∣∣∣
q=Q
q̇=v

= P . (14.21)

The canonical Hamiltonian is obtained by Legendre transforming on q̇,

H(Q,P ) ≡ P q̇ − L , (14.22)

= Pv(Q,P )− L
(
Q, v(Q,P )

)
. (14.23)
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It is easy to check that the canonical evolution equations reproduce the inverse
phase space transformation (14.21) and the Euler-Lagrange (14.18),

Q̇ ≡ ∂H

∂P
= v + P

∂v

∂P
− ∂L

∂q̇

∂v

∂P
= v , (14.24)

Ṗ ≡ −∂H

∂Q
= −P

∂v

∂Q
+

∂L

∂q
+

∂L

∂q̇

∂v

∂P
=

∂L

∂q
. (14.25)

This is what we mean by the statement, “the Hamiltonian generates time evo-
lution.” When the Lagrangian has no explicit time dependence, H is also the
associated conserved quantity. Hence it is “the” energy by anyone’s definition,
of course up to canonical transformation.

Now consider a system whose Lagrangian L(q, q̇, q̈) depends nondegener-
ately upon q̈. The Euler-Lagrange equation is,

∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
= 0 . (14.26)

Non-degeneracy implies that ∂L
∂q̈ depends upon q̈, in which case we can cast

(14.26) in a form radically different from Newton’s,

q(4) = F(q, q̇, q̈, q(3)) =⇒ q(t) = Q(t, q0, q̇0, q̈0, q
(3)
0 ) . (14.27)

Because solutions now depend upon four pieces of initial value data there
must be four canonical coordinates. Ostrogradski’s choices for these are,

Q1 ≡ q , P1 ≡
∂L

∂q̇
− d

dt

∂L

∂q̈
, (14.28)

Q2 ≡ q̇ , P2 ≡
∂L

∂q̈
. (14.29)

The assumption of nondegeneracy is that we can invert the phase space trans-
formation (14.28–14.29) to solve for q̈ in terms of Q1, Q2 and P2. That is, there
exists a function a(Q1, Q2, P2) such that,

∂L

∂q̈

∣∣∣∣∣ q=Q1
q̇=Q2
q̈=a

= P2 . (14.30)

Note that one only needs the function a(Q1, Q2, P2) to depend upon three
canonical coordinates — and not all four — because L(q, q̇, q̈) only depends
upon three configuration space coordinates. This simple fact has great conse-
quence.

Ostrogradski’s Hamiltonian is obtained by Legendre transforming, just as
in the first derivative case, but now on q̇ = q(1) and q̈ = q(2),

H(Q1, Q2, P1, P2) ≡
2∑
i=1

Piq
(i) − L , (14.31)

= P1Q2 + P2a(Q1, Q2, P2)− L
(
Q1, Q2, a(Q1, Q2, P2)

)
. (14.32)
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The time evolution equations are just those suggested by the notation,

Q̇i ≡
∂H

∂Pi
and Ṗi ≡ −

∂H

∂Qi
. (14.33)

Let’s check that they generate time evolution. The evolution equation for Q1,

Q̇1 =
∂H

∂P1
= Q2 , (14.34)

reproduces the phase space transformation q̇ = Q2 in (14.29). The evolution
equation for Q2,

Q̇2 =
∂H

∂P2
= a + P2

∂a

∂P2
− ∂L

∂q̈

∂a

∂P2
= a , (14.35)

reproduces (14.30). The evolution equation for P2,

Ṗ2 = − ∂H

∂Q2
= −P1 − P2

∂a

∂Q2
+

∂L

∂q̇
+

∂L

∂q̈

∂a

∂Q2
= −P1 +

∂L

∂q̇
, (14.36)

reproduces the phase space transformation P1 = ∂L
∂q̇ −

d
dt
∂L
∂q̈ (14.28). And the

evolution equation for P1,

Ṗ1 = − ∂H

∂Q1
= −P2

∂a

∂Q1
+

∂L

∂q
+

∂L

∂q̈

∂a

∂Q1
=

∂L

∂q
, (14.37)

reproduces the Euler-Lagrange equation (14.26). So Ostrogradski’s system
really does generate time evolution. When the Lagrangian contains no explicit
dependence upon time it is also the conserved Noether current. By anyone’s
definition, it is therefore “the” energy, again up to canonical transformation.

There is one, overwhelmingly bad thing about Ostrogradski’s Hamiltonian
(14.32): it is linear in the canonical momentum P1. This means that no system
of this form can be stable. In fact, there is not even any barrier to decay. Note
also the power and generality of the result. It applies to every Lagrangian
L(q, q̇, q̈) which depends nondegenerately upon q̈, independent of the details.
The only assumption is nondegeneracy, and that simply means one cannot
eliminate q̈ by partial integration. This is why Newton was right to assume the
laws of physics take the form (14.19) when expressed in terms of fundamental
dynamical variables.

Adding more higher derivatives just makes the situation worse. Consider
a Lagrangian L

(
q, q̇, . . . , q(N)

)
which depends upon the first N derivatives of

q(t). If this Lagrangian depends nondegenerately upon q(N) then the Euler-
Lagrange equation,

N∑
i=0

(
− d

dt

)i
∂L

∂q(i)
= 0 , (14.38)

contains q(2N). Hence the canonical phase space must have 2N coordinates.
Ostrogradski’s choices for them are,
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Qi ≡ q(i−1) and Pi ≡
N∑
j=i

(
− d

dt

)j−i ∂L

∂q(j)
. (14.39)

Non-degeneracy means we can solve for q(N) in terms of PN and the Qi’s.
That is, there exists a function A(Q1, . . . , QN , PN ) such that,

∂L

∂q(N)

∣∣∣∣∣ q(i−1)=Qi

q(N)=A

= PN . (14.40)

For general N Ostrogradski’s Hamiltonian takes the form,

H ≡
N∑
i=1

Piq
(i) − L , (14.41)

=P1Q2+P2Q3+· · ·+ PN−1QN + PNA− L
(
Q1, . . . , QN ,A

)
. (14.42)

It is simple to check that the evolution equations,

Q̇i ≡
∂H

∂Pi
and Ṗi ≡ −

∂H

∂Qi
, (14.43)

again reproduce the canonical transformations and the Euler-Lagrange equa-
tion. So (14.42) generates time evolution. Similarly, it is Noether current for
the case where the Lagrangian contains no explicit time dependence. So there
is little alternative to regarding (14.42) as “the” energy, again up to canonical
transformation.

One can see from (14.42) that the Hamiltonian is linear in P1, P2, . . . PN−1.
Only with respect to PN might it be bounded from below. Hence the Hamil-
tonian is necessarily unstable over half the classical phase space for large N !

14.3 Common Misconceptions

The no-go theorem I have just reviewed ought to come as no surprise. It
explains why Newton was right to expect that physical laws take the form
of second order differential equations when expressed in terms of fundamen-
tal dynamical variables.2 Every fundamental system we have discovered since
Newton’s day has had this form. The bizarre, dubious thing would be if New-
ton had blundered upon a tiny subset of possible physical laws, and all our
probing over the course of the next three centuries had never revealed the
vastly richer possibilities. However — deep sigh — particle theorists don’t like
being told something is impossible, and a definitive no-go theorem such as
2 The caveat is there because one can always get higher order equations by solving

for some of the fundamental variables.
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that of Ostrogradski provokes them to tortuous flights of evasion. I ought
to know, I get called upon to referee the resulting papers often enough!
No one has so far found a way around Ostrogradski’s theorem. I won’t at-
tempt to prove that no one ever will, but let me use this section to run
through some of the misconceptions which have been in back of attempted
evasions.

To fix ideas it will be convenient to consider a higher derivative general-
ization of the harmonic oscillator,

L = − gm

2ω2
q̈2 +

m

2
q̇2 − mω2

2
q2 . (14.44)

Here m is the particle mass, ω is a frequency and g is a small positive pure
number we can think of as a coupling constant. The Euler-Lagrange equation,

−m
( g

ω2
q(4) + q̈ + ω2q

)
= 0 , (14.45)

has the general solution,

q(t) = A+ cos(k+t) + B+ sin(k+t) + A− cos(k−t) + B− sin(k−t) . (14.46)

Here the two frequencies are,

k± ≡ ω

√
1±
√

1−4g
2g

, (14.47)

and the initial value constants are,

A+ =
k2−q0+q̈0

k2−−k2
+

, B+ =
k2−q̇0+q

(3)
0

k+(k2−−k2
+)

, (14.48)

A− =
k2
+q0+q̈0

k2
+−k2−

, B− =
k2
+q̇0+q

(3)
0

k−(k2
+−k2−)

. (14.49)

The conjugate momenta are,

P1 = mq̇ +
gm

ω2
q(3) ⇔ q(3) =

ω2P1−mω2Q2

gm
, (14.50)

P2 = −gm

ω2
q̈ ⇔ q̈ = −ω2P2

gm
. (14.51)

The Hamiltonian can be expressed in terms of canonical variables, configura-
tion space variables or initial value constants,

H = P1Q2 −
ω2

2gm
P 2

2 −
m

2
Q2

2 +
mω2

2
Q2

1 , (14.52)

=
gm

ω2
q̇q(3) − gm

2ω2
q̈2 +

m

2
q̇2 +

mω2

2
q2 , (14.53)

=
m

2

√
1−4g k2

+(A2
++B2

+)− m

2

√
1−4g k2

−(A2
−+B2

−) . (14.54)
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The last form makes it clear that the “+” modes carry positive energy whereas
the “−” modes carry negative energy.

14.3.1 Nature of the Instability

It’s important to understand both how the Ostrogradskian instability mani-
fests and what is physically wrong with a theory which shows this instability.
Because the Ostrogradskian Hamiltonian (14.42) is not bounded below with
respect to more than one of its conjugate momenta, one sees that the problem
is not reaching arbitrarily negative energies by setting the dynamical variable
to some constant value. Rather it is reaching arbitrarily negative energies by
making the dynamical variable have a certain time dependence. People some-
times mistakenly believe they have found a higher derivative system which is
stable when all they have checked is that the Hamiltonian is bounded from
below for constant field configurations. For example, from expression (14.53)
we see that our higher derivative oscillator energy is bounded below by zero
for q(t) = const! Negative energies are achieved by making q̈ large and/or
making q(3) large while keeping q̇+gq(3)/ω2 fixed.

Another crucial point is that the same dynamical variable typically carries
both positive and negative energy degrees of freedom in a higher derivative
theory. For our higher derivative oscillator this is apparent from expression
(14.46) which shows that q(t) involves both the positive energy degrees of free-
dom, A+ and B+, and the negative energy ones, A− and B−. And note from
expression (14.54) that I really mean positive and negative energy, not just
positive and negative frequency, which is the usual case in a lower derivative
theory.

People sometimes imagine that the energy of a higher derivative theory
decays with time. That is not true. Provided one is dealing with a complete
system, and provided there is no external time dependence, the energy of a
higher derivative system is conserved, just as it would be under those con-
ditions for a lower derivative theory. This conservation is apparent for our
higher derivative oscillator from expression (14.54).

The physical problem with nondegenerate higher derivative theories is not
that their energies decay to lower and lower values. The problem is rather
that certain sectors of the theory become arbitrarily highly excited when one
is dealing with an interacting, continuum field theory which has nondegenerate
higher derivatives. To understand this I must digress to remind you of some
familiar facts about the Hydrogen atom.

If you consider Hydrogen in isolation, there is an infinite tower of sta-
tionary states. However, if you allow the Hydrogen atom to interact with
electromagnetism only the ground state is stationary; all the excited states
decay through the emission of a photon. Why is this so? It certainly is not
because “the system wants to lower its energy.” The energy of the full system
is constant, the binding energy released by the decaying atom being compen-
sated by the energy of the recoil photon. Yet the decay always takes place,
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and rather quickly. The reason is that decay is terrifically favored by entropy.
If we prepare the Hydrogen atom in an excited state, with no photons present,
there is one way for the atom to remain excited, whereas there are an infinite
number of ways for it to decay because the recoil photon could go off in any
direction.

Now consider an interacting, continuum field theory which possesses the
Ostrogradskian instability. In particular consider its likely particle spectrum
about some “empty” solution in which the field is constant. Because the
Hamiltonian is linear in all but one of the conjugate momenta we can in-
crease or decrease the energy by moving different directions in phase space.
Hence there must be both positive energy and negative energy particles —
just as there are in our higher derivative oscillator. Just as in that point
particle model, the same continuum field must carry the creation and anni-
hilation operators of both the positive and the negative energy particles. If
the theory is interacting at all — that is, if its Lagrangian contains a higher
than quadratic power of the field — then there will be interactions between
positive and negative energy particles. Depending upon the interaction, the
empty state can decay into some collection of positive and negative energy
particles. The details don’t really matter, all that matters is the counting:
there is one way for the system to stay empty versus a continuous infinity
of ways for it to decay. This infinity is even worse than for the Hydrogen
atom because it includes not only all the directions that recoil particles of
fixed energies could go but also the fact that the various energies can be
arbitrarily large in magnitude provided they sum to zero. Because of that
last freedom the decay is instantaneous. And the system doesn’t just decay
once! It is even more entropically favored for there to be two decays, and
better yet for three, etc. You can see that such a system instantly evapo-
rates into a maelstrom of positive and negative energy particles. Some of my
mathematically minded colleagues would say it isn’t even defined. I prefer to
simply observe that no theory of this kind can describe the universe we ex-
perience in which all particles have positive energy and empty space remains
empty.

Note that we only reach this conclusion if the higher derivative theory
possesses both interactions and continuum particles. Our point particle oscil-
lator has no interactions, so its negative energy degree of freedom is harmless.
Of course it is also completely unobservable! However, it is conceivable we
could couple this higher derivative oscillator to a discrete system without
engendering an instability. The feature that drives the instability when con-
tinuum particles are present is the vast entropy of phase space. Without that
it becomes an open question whether or not there is anything wrong with
a higher derivative theory. Of course we live in a continuum universe, and
any degree of freedom we can observe must be interacting, so these are very
safe assumptions. However, people sometimes delude themselves that there is
no problem with continuum, interacting higher derivative models of the uni-
verse on the basis of studying higher derivative systems which could never
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describe the universe because they either lack interactions or else continuum
particles.

In this sub-section we have learned:

1. The Ostrogradskian instability does not drive the dynamical variable to
a special, constant value but rather to a special kind of time dependence.

2. A dynamical variable which experiences the Ostrogradskian instability
will carry both positive and negative energy creation and annihilation
operators.

3. If the system interacts then the “empty” state can decay into a collection
of positive and negative energy excitations.

4. If the system is a continuum field theory the vast entropy at infinite mo-
mentum will make the decay instantaneous.

14.3.2 Perturbation Theory

People sometimes mistakenly believe that the Ostrogradskian instability is
avoided if higher derivatives are segregated to appear only in interaction terms.
This is not correct if one considers the theory on a fundamental level. One
can see from the construction of Sect. 14.2 that the fact of Ostrogradski’s
Hamiltonian being unbounded below depends only upon nondegeneracy, irre-
spective of how one organizes any approximation technique. However, there is
a way of imposing constraints to make the theory agree with its perturbative
development. If this is done then there are no more higher derivative degrees
of freedom, however, one typically loses unitarity, causality and Lorentz in-
variance on the nonperturbative level.

I constructed the higher derivative oscillator (14.44) so that its higher
derivatives vanish when g=0. If we solve the Euler-Lagrange equation (14.45)
exactly, without employing perturbation theory, there are four linearly in-
dependent solutions (14.46) corresponding to a positive energy oscillator of
frequency k+ and a negative energy oscillator of frequency k−. However, we
might instead regard the parameter g as a coupling constant and solve the
equations perturbatively. This means substituting the ansatz,

qpert(t) =
∞∑
n=0

gnxn(t) , (14.55)

into the Euler-Lagrange equation (14.45) and segregating terms according to
powers of g. The resulting system of equations is,

ẍ0 + ω2x0 = 0 , (14.56)

ẍ1 + ω2x1 = − 1
ω2

x
(4)
0 , (14.57)

ẍ2 + ω2x2 = − 1
ω2

x
(4)
1 , (14.58)
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and so on. Because the zeroth order equation involves only second derivatives,
its solution depends upon only two pieces of initial value data,

x0(t) = q0 cos(ωt) +
q̇0

ω
sin(ωt) . (14.59)

The first correction is,

x1(t) = −ωt

2
q0 sin(ωt) +

t

2
q̇0 cos(ωt)− 1

2ω
q̇0 sin(ωt) , (14.60)

and it is easy to see that the sum of all corrections gives,

qpert(t) = q0 cos(k+t) +
q̇0

k+
sin(k+t) . (14.61)

What is the relation of the perturbative solution (14.61) to the general one
(14.46)? The perturbative solution is what results if we change the theory by
imposing the constraints,

q̈(t) = −k2
+q(t) ⇐⇒ P2 =

m

2

(
1−

√
1−4g

)
Q1 , (14.62)

q(3)(t) = −k2
+q̇(t) ⇐⇒ P1 =

m

2

(
1+

√
1−4g

)
Q2 . (14.63)

Under these constraints the Hamiltonian becomes,

Hpert =
√

1−4g
(m

2
Q2

2 +
mk2

+

2
Q2

1

)
, (14.64)

which is indeed that of a single harmonic oscillator. From the full theory,
perturbation theory has retained only the solution whose frequency is well
behaved for g → 0,

k+ = ω
(
1 +

1
2
g +

7
8
g2 + O(g3)

)
. (14.65)

It has discarded the solution whose frequency blows up as g → 0,

k− =
ω
√

g

(
1− 1

2
g − 5

8
g2 + O(g3)

)
. (14.66)

So what’s wrong with this? In fact there is nothing wrong with the pro-
cedure for our model. If the constraints (14.62–14.63) are imposed at one
instant, they remain valid for all times as a consequence of the full equation
of motion. However, that is only because our model is free of interactions. Re-
call that this same feature means the positive and negative energy degrees of
freedom exist in isolation of one another, and there is no decay to arbitrarily
high excitation as there would be for an interacting, continuum field theory.

When interactions are present it is more involved but still possible to
impose constraints which change the theory so that only the lower derivative,
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perturbative solutions remain. The procedure was first worked out by Jaén,
Llosa and Molina [19], and later, independently, by Eliezer and me [20]. To
understand its critical defect suppose we change the “interaction” of our higher
derivative oscillator from a quadratic term to a cubic one,

− gm

2ω4
q̈2 −→ − gm

6 ω4
q̈3 . (14.67)

Here  is some constant with the dimensions of a length. As with the quadratic
interaction, the new equation of motion is fourth order,

−m

[
d2

dt2

( gq̈2

2 ω4

)
+ q̈ + ω2q

]
= 0 , (14.68)

Its general solution depends upon four pieces of initial value data. However,
by isolating the highest derivative term of the free theory,

q̈ = −ω2q − d2

dt2

( gq̈2

2 ω4

)
, (14.69)

and then iteratively substituting (14.69), we can delay the appearance of
higher derivatives on the right hand side to any desired order in the coupling
constant g. For example, two iterations frees the right hand side of higher
derivatives up to order g2,

q̈ = −ω2q − d2

dt2

{
g

2 ω4

[
−ω2q − d2

dt2

( gq̈2

2 ω4

)]2}
, (14.70)

= −ω2q +
g

 

(
ω2q2−q̇2

)
+

g2

2 2ω4
q
d2

dt2

(
q̈2
)

− g2

2 2ω6

d2

dt2

[
q
d2

dt2

(
q̈2
)]
− g3

8 3ω12

d2

dt2

[
d2

dt2

(
q̈2
)]2

. (14.71)

This obviously becomes complicated fast! However, the lower derivative terms
at order g2 are simple enough to give if I don’t worry about the higher deriva-
tive remainder,

q̈ = −ω2q +
g

 

(
ω2q2−q̇2

)
+

g2

 2

(
−6ω2q3+14qq̇2

)
+ O(g3) . (14.72)

If we carry this out to infinite order, and drop the infinite derivative remainder,
the result is an equation of the traditional form,

q̈ = f(q, q̇) . (14.73)

The canonical version of this equation gives the first of the desired constraints.
The second is obtained from the canonical version of its time derivative.
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The constrained system we have just described is consistent on the per-
turbative level, but not beyond. It does not follow from the original, exact
equation. That would be no problem if we could define physics using pertur-
bation theory, but we cannot. Perturbation theory does not converge for any
known interacting, continuum field theory in 3+1 dimensions! The fact that
the constraints are not consistent beyond perturbation theory means there is a
nonperturbative amplitude for the system to decay to the arbitrarily high ex-
citation in the manner described in Sect. 14.3.1. The fact that the constraints
treat time derivatives differently than space derivatives also typically leads to
a loss of causality and Lorentz invariance beyond perturbation theory.

A final comment concerns the limit of small coupling constant, i.e. g → 0.
One can see from the frequencies (14.65–14.66) of our higher derivative os-
cillator that the negative energy frequency diverges for g → 0. Disingenuous
purveyors of higher derivative models sometimes appeal to people’s experience
with positive energy modes by arguing that, “the k− mode approaches infinite
frequency for small coupling so it must drop out.” That is false! The argument
is quite correct for an infinite frequency positive energy mode in a stable the-
ory. In that case exciting the mode costs an infinite amount of energy which
would have to be drawn from de-exciting finite frequency modes. However,
a negative energy mode doesn’t decouple as its frequency diverges. Rather it
couples more strongly because taking its frequency to infinity opens up more
and more ways to balance its negative energy by exciting finite frequency,
positive energy modes.

14.3.3 Quantization

People sometimes imagine that quantization might stabilize a system against
the Ostrogradskian instability the same way that it does for the Hydrogen
atom coupled to electromagnetism. This is a failure to understand correspon-
dence limits. Conclusions drawn from classical physics survive quantization
unless they depend upon the system either being completely excluded from
some region of the canonical phase space or else inhabiting only a small region
of it. For example, the classical instability of the Hydrogen atom (when cou-
pled to electromagnetism) derives from the fact that the purely Hydrogenic
part of the energy,

EHyd =
‖p‖2
2m

− e2

‖x‖ . (14.74)

can be made arbitrarily negative by placing the electron close to the nucleus
at fixed momentum. Because this instability depends upon the system being
in a very small region of the canonical phase space, one might doubt that it
survives quantization, and explicit computation shows that it does not.

In contrast, the Ostrogradskian instability derives from the fact that P1Q2

can be made arbitrarily negative by taking P1 either very negative, for positive
Q2, or else very positive, for negative Q2. This covers essentially half the
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classical phase space! Further, the variables Q2 and P1 commute with one
another in Ostrogradskian quantum mechanics. So there is no reason to expect
that the Ostrogradskian instability is unaffected by quantization.

14.3.4 Unitarity vs. Instability

Particle physicists who quantize higher derivative theories don’t typically rec-
ognize a problem with the stability. They maintain that the problem with
higher derivatives is a breakdown of unitarity. In this sub-section I will again
have recourse to the higher derivative oscillator (14.44) to explain the connec-
tion between the two apparently unrelated problems.

Let us find the “empty” state wavefunction, Ω(Q1, Q2) that has the min-
imum excitation in both the positive and negative energy degrees of freedom.
The procedure for doing this is simple: first identify the positive and negative
energy lowering operators α± and then solve the equations,

α+|Ω〉 = 0 = α−|Ω〉 . (14.75)

We can recognize the raising and lowering operators by simply expressing the
general solution (14.46) in terms of exponentials,

q(t) =
1
2
(A++iB+)e−ik+t +

1
2
(A+−iB+)eik+t

+
1
2
(A−+iB−)e−ik−t +

1
2
(A−−iB−)eik−t . (14.76)

Recall that the k+ mode carries positive energy, so its lowering operator must
be proportional to the e−ik+t term,

α+ ∼ A+ + iB+ , (14.77)

∼ mk+

2

(
1+

√
1−4g

)
Q1 + iP1 − k+P2 −

im

2

(
1−

√
1−4g

)
Q2(14.78)

The k− mode carries negative energy, so its lowering operator must be pro-
portional to the e+ik−t term,

α− ∼ A− − iB− , (14.79)

∼ mk−
2

(
1−

√
1−4g

)
Q1 − iP1 − k−P2 +

im

2

(
1+

√
1−4g

)
Q2(14.80)

Writing Pi = −i ∂
∂Qi

we see that the unique solution to (14.75) has the form,

Ω(Q1, Q2) = N exp

[
− m
√

1−4g
2(k++k−)

(
k+k−Q2

1 + Q2
2

)
− i
√
gmQ1Q2

]
. (14.81)

The empty wave function (14.81) is obviously normalizable, so it gives
a state of the quantum system. We can build a complete set of normalized
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stationary states by acting arbitrary numbers of + and − raising operators
on it,

|N+, N−〉 ≡
(α†

+)N+√
N+!

(α†
−)N−√
N−!
|Ω〉 . (14.82)

On this space of states the Hamiltonian operator is unbounded below, just as
in the classical theory,

H |N+, N−〉 =
(
N+k+ −N−k−

)
|N+, N−〉 . (14.83)

This is the correct way to quantize a higher derivative theory. One evidence
of this fact is that classical negative energy states correspond to quantum
negative energy states as well.

Particle physicists don’t quantize higher derivative theories as we just have.
What they do instead is to regard the negative energy lowering operator as
a positive energy raising operator. So they define a “ground state” |Ω〉 which
obeys the equations,

α+|Ω〉 = 0 = α†
−|Ω〉 . (14.84)

The unique wave function which solves these equations is,

Ω(Q1, Q2) = N exp

[
− m
√

1−4g
2(k−−k+)

(
k+k−Q2

1 −Q2
2

)
+ i
√
gmQ1Q2

]
. (14.85)

This wave function is not normalizable, so it doesn’t correspond to a state of
the quantum system. At this stage we should properly call a halt to the anal-
ysis because we aren’t doing quantum mechanics anymore. The Schrodinger
equation Hψ(Q) = Eψ(Q) is just a second order differential equation. It has
two linearly independent solutions for every energy E: positive, negative, real,
imaginary, quaternionic — it doesn’t matter. The thing that puts the “quan-
tum” in quantum mechanics is requiring that the solution be normalizable.
Many peculiar things can happen if we abandon allow normalizability [21, 22].

However, my particle theory colleagues ignore this little problem and define
a completely formal “space of states” based upon |Ω〉,

|N+, N−〉 ≡
(α†

+)N+√
N+!

(α−)N−√
N−!

|Ω〉 . (14.86)

None of these wavefunctions is any more normalizable than Ω(Q1, Q2), so not
a one of them corresponds to a state of the quantum system. However, they
are all positive energy eigenfunctions,

H |N+, N−〉 =
(
N+k+ + N−k−

)
|N+, N−〉 . (14.87)

My particle physics colleagues typically say they define |Ω〉 to have unit norm.
Because they have not changed the commutation relations,
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[α+, α†
+] = 1 = [α−, α†

−] , (14.88)

the norm of any state with odd N− is negative! The lowest of these is,

〈0, 1|0, 1〉 = 〈Ω|α†
−α−|Ω〉 = −〈Ω|Ω〉 . (14.89)

As I pointed out above, the reason this has happened is that we aren’t do-
ing quantum mechanics any more. We ought to use the normalizable, but
indefinite energy eigenstates. What particle physicists do instead is to reason
that because the probabilistic interpretation of quantum mechanics requires
norms to be positive, the negative norm states must be excised from the space
of states. At this stage good particle physicists note that that the result-
ing model fails to conserve probability [23]. Just as the correctly-quantized,
indefinite-energy theory allows processes which mix positive and negative en-
ergy particles, so too the indefinite-norm theory allows processes which mix
positive and negative norm particles. It only conserves probability on the space
of “states” which includes both kinds of norms. If we excise the negative norm
states then probability is no longer conserved.

So good particle physicists reach the correct conclusion — that nondegen-
erate higher derivative theories can’t describe our universe — by a somewhat
illegitimate line of reasoning. But who cares? They got the right answer! Of
course bad particle physicists regard the breakdown of unitarity as a challenge
for inspired tinkering to avoid the problem. Favorite ploys are the Lee-Wick
reformulation of quantum field theory [24] and nonperturbative resumma-
tions. The analysis also typically involves the false notion that high frequency
ghosts decouple, which I debunked at the end of Sect. 14.3.2. When the final
effort is written up and presented to the world, some long-suffering higher
derivative expert gets called away from his research to puzzle out what was
done and explain why it isn’t correct. Sigh. The problem is so much clearer
in its negative energy incarnation! I could list many examples at this point,
but I will confine myself to citing a full-blown paper debunking one of them
[25]. It is also appropriate to note that Hawking and Hertog have previously
called attention to the mistake of quantizing higher derivative theories using
nonnormalizable wave functions [26].

14.3.5 Constraints

The only way anyone has ever found to avoid the Ostrogradskian instability
on a nonperturbative level is by violating the single assumption needed to
make Ostrogradski’s construction: nondegeneracy. Higher derivative theories
for which the definition of the highest conjugate momentum (14.40) cannot
be inverted to solve for the highest derivative can sometimes be stable. An
interesting example of this kind is the rigid, relativistic particle studied by
Plyushchay [27, 28].

Degeneracy is of great importance because all theories which possess con-
tinuous symmetries are degenerate, irrespective of whether or not they possess
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higher derivatives. A familiar example is the relativistic point particle, whose
dynamical variable is Xμ(τ) and whose Lagrangian is,

L = −m

√
−ημνẊμẊν . (14.90)

The conjugate momentum is,

Pμ ≡
mẊμ√
−Ẋ2

. (14.91)

Because the right hand side of this equation is homogeneous of degree zero
one can not solve for Ẋμ. The associated continuous symmetry is invariance
under reparameterizations τ → τ ′(τ),

Xμ(τ) −→ X ′μ(τ) ≡ Xμ
(
τ ′−1(τ)

)
. (14.92)

The cure for symmetry-induced degeneracy is simply to fix the symmetry
by imposing gauge conditions. Then the gauge-fixed Lagrangian should no
longer be degenerate in terms of the remaining variables. For example, we
might parameterize so that τ = X0(τ), in which case the gauge-fixed particle
Lagrangian is,

LGF = −m
√

1− Ẋ · Ẋ . (14.93)

In this gauge the relation for the momenta is simple to invert,

Pi ≡
mẊi√

1− Ẋ · Ẋ
⇐⇒ Ẋ i =

P i

√
m2 + P · P

. (14.94)

When a continuous symmetry is used to eliminate a dynamical variable,
the equation of motion of this variable typically becomes a constraint. For sym-
metries enforced by means of a compensating field — such as local Lorentz
invariance is with the antisymmetric components of the vierbein [29] — the
associated constraints are tautologies of the form 0 = 0. Sometimes the con-
straints are nontrivial, but implied by the equations of motion. An example
of this kind is the relativistic particle in our synchronous gauge. The equation
of the gauge-fixed zero-component just tells us the Hamiltonian is conserved,

d

dτ

(
mẊ0√
−ημνẊμẊν

)
= 0 −→ d

dt

(√
m2 + p · p

)
= 0 . (14.95)

And sometimes the constraints give nontrivial relations between the canonical
variables that generate residual, time-independent symmetries. In this case
another degree of freedom can be removed (“gauge fixing counts twice,” as
van Nieuwenhuizen puts it). An example of this kind of constraint is Gauss’
Law in temporal gauge electrodynamics.
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Were it not for constraints of this last type, the analysis of a higher deriva-
tive theory with a gauge symmetry would be straightforward. One would sim-
ply fix the gauge and then check whether or not the gauge-fixed Lagrangian
depends nondegenerately upon higher time derivatives. If it did, the conclu-
sion would be that the theory suffers the Ostrogradskian instability. However,
when constraints of the third type are present one must check whether or
not they affect the instability. This is highly model dependent but a very
simple rule seems to be generally applicable: if the number of gauge con-
straints is less than the number of unstable directions in the canonical phase
space then there is no chance for avoiding the problem. Because the number
of constraints for any symmetry is fixed, whereas the number of unstable di-
rections increases with the number of higher derivatives, one consequence is
that gauge constraints can at best avoid instability for some fixed number
of higher derivatives. For example, the constraints of the second derivative
model of Plyushchay are sufficient to stabilize the system [27, 28], but one
would expect it to become unstable if third derivatives were added.

People sometimes make the mistake of believing that the Ostrogradskian
instability can be avoided with just a single, global constraint on the Hamil-
tonian. For example, Boulware, Horowitz and Strominger [30] showed the
energy is zero for any asymptotically flat solution of the higher derivative
field equations derived from the Lagrangian,

L = αR2√−g + βRμνRμν
√
−g . (14.96)

As I explained in Sect. 14.3.1, the nature of the Ostrogradskian instability is
not that the energy decays but rather that the system evaporates to a very
highly excited state of compensating, positive and negative energy degrees
of freedom. As long as β 
= 0, there are six independent, higher derivative
momenta at each space point, whereas there are only four local constants —
or five if α and β are such as to give local conformal invariance. Hence there
are two (or one) unconstrained instabilities per space point. There are an
infinite number of space points, so the addition of a single, global constraint
does not change anything. I should point out that Boulware, Horowitz and
Strominger were aware of this, cf. their discussion of the dipole instability.

The case of β = 0 is special, and significant for the next section. If α has
the right sign that model has long been known to have positive energy [31, 32].
This result in no way contradicts the previous analysis. When β = 0 the terms
which carry second derivatives are contracted in such way that only a single
component of the metric carries higher derivatives. So now the counting is
one unstable direction per space point versus four local constraints. Hence
the constraints can win, and they do if α has the right sign.

14.3.6 Nonlocality

I would like to close this section by commenting on the implications of Ostro-
gradski’s theorem for fully nonlocal theories. In addition to nonlocal quantum
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field theories [33, 34, 35] this is relevant to string field theory [36, 37, 38], to
noncommutative geometry [39, 40], to regularization techniques [41, 42, 43]
and even to theories of cosmology [15, 44, 45]. The issue in each case is whether
or not we can think of the fully nonlocal theory as the limit of a sequence of
ever higher derivative theories. When such a representation is possible the
nonlocal theory must inherit the Ostrogradskian instability.

The higher derivative representation is certainly valid for string field theory
because, otherwise, there would be cuts and poles that would interfere with
perturbative unitarity. So string field theory suffers from the Ostrogradskian
instability [20]. The same is true for theories where the nonlocality is of limited
extent in time [46], although not everyone agrees [47, 48]. However, when the
nonlocality involves inverse differential operators there need be no problem
[20, 44]. Indeed, the effective action of any quantum field theory is nonlocal in
this way [49, 50]! Nor is there necessarily any problem when the nonlocality
arises in the form of algebraic functions of local actions [51].

14.4 ΔR[g] = f(R) Theories

From the lengthy argumentation of the previous two sections one might con-
clude that the only potentially stable, local modification of gravity is a cos-
mological constant, ΔR[g] = −2Λ. However, a close analysis of Sect. 14.3.5
reveals that it is also possible to consider algebraic functions of the Ricci
scalar. In this section I first explain why such theories can avoid the Ostro-
gradskian instability. I then demonstrate that they are equivalent to general
relativity with a minimally coupled scalar, provided we ignore matter. Finally,
I exploit this equivalence, with the construction described in the Introduction,
to show how f(R) can be chosen to enforce any evolution a(t).

14.4.1 Why They Can Be Stable

The alert reader will have noted that the R + R2 model [31, 32] avoids the
Ostrogradskian instability. It does this by violating Ostrogradski’s assumption
of nondegeneracy: the tensor indices of the second derivative terms in the
Ricci scalar are contracted together so that only a single component of the
metric carries higher derivatives. This component does acquire a new, higher
derivative degree of freedom, and the energy of this degree of freedom is indeed
opposite to that of the corresponding lower derivative degree of freedom, just
as required by Ostrogradski’s analysis. However, that lower derivative degree
of freedom is the Newtonian potential. It carries negative energy, but it is also
completely fixed in terms of the other metric and matter fields by the g00

constraint. So the only instability associated with it is gravitational collapse.
Its higher derivative counterpart has positive energy, at least on the kinetic
level; it can still have a bad potential, and the model is indeed only stable for
one sign of the R2 term.
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None of these features depended especially upon the higher derivative term
being R2. Any function for the Ricci scalar would work as well. Note that we
cannot allow derivatives of the Ricci scalar, because Ostrogradski’s theorem
says the next higher derivative degree of freedom would carry negative energy
and there would be no additional constraints to protect it. We also cannot
permit more general contractions of the Riemann tensor because then other
components of the metric would carry higher derivatives. These components
are positive energy in general relativity, so their higher derivative counterparts
would be negative, and there would again be no additional constraints to
protect the theory against instability.

14.4.2 Equivalent Scalar Representation

The general Lagrangian we wish to consider takes the form,

L =
1

16πG

(
R + f(R)

)√
−g . (14.97)

If we ignore the coupling to matter the modified gravitational field equation
consists of the vanishing of the following tensor,

16πG√−g

δS

δgμν
= [1+f ′(R)]Rμν −

1
2
[R+f(R)]gμν + gμν [f ′(R)];ρρ − [f ′(R)];μν .

(14.98)
There is an old procedure for reformulating this as general relativity with a
minimally coupled scalar. I don’t know whom to credit, but I will give the
construction.

The first step is to define an “equivalent” theory with an auxiliary field φ
which is defined by the relation.

φ ≡ 1 + f ′(R) ⇐⇒ R = R(φ) . (14.99)

Inverting the relation determines the Ricci scalar as an algebraic function of φ.
We can then define an auxiliary potential for φ by Legendre transformation,

U(φ) ≡
(
φ−1

)
R(φ) − f

(
R(φ)

)
=⇒ U ′(φ) = R(φ) . (14.100)

Now consider the equivalent scalar-tensor theory whose Lagrangian is,

LE ≡
1

16πG

(
φR− U(φ)

)√
−g . (14.101)

Its field equations are,

16πG√−g

δSE

δφ
= R− U ′(φ) = 0 , (14.102)

16πG√−g

δSE

δgμν
= φRμν −

1
2

(
φR−U(φ)

)
gμν + gμνφ

;ρ
ρ − φμν = 0 . (14.103)
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The scalar (14.102) implies φ = 1+ f ′(R), whereupon the tensor (14.103)
reproduce the original modified gravity (14.98).

The final step is to define a new metric g̃μν and a new scalar ϕ by the
change of variables,

g̃μν ≡ φ gμν ⇐⇒ gμν = exp
[
−
√

4πG
3

ϕ
]
g̃μν , (14.104)

ϕ ≡
√

3
4πG

ln(φ) ⇐⇒ φ = exp
[√4πG

3
ϕ
]
. (14.105)

In terms of these variables the equivalent Lagrangian takes the form,

LE =
1

16πG
R̃
√
−g̃ − 1

2
∂μϕ∂νϕ g̃μν

√
−g̃ − V (ϕ)

√
−g̃ , (14.106)

where the scalar potential is,

V (ϕ) ≡ 1
16πG

U

(
exp

[√4πG
3

ϕ
])

exp
[
−
√

16πG
3

ϕ
]
. (14.107)

This is general relativity with a minimally coupled scalar, as claimed.

14.4.3 Reconstructing f(R) from Cosmology

I want to show how to choose f(R) to support an arbitrary a(t).3 Recall from
the Introduction that one can choose the potential of a quintessence model
such as (14.106) to support any homogeneous and isotropic cosmology for its
metric g̃μν . However, we cannot immediately exploit this construction because
it is the metric gμν which is assumed known, not g̃μν . We must explain how
to infer the one from the other without knowing f(R).

Because the relation (14.104) between gμν and g̃μν is a conformal transfor-
mation, it makes sense to work in a coordinate system in which each metric
is conformal to flat space. This is accomplished by changing from co-moving
time t to conformal time η though the relation, dη = dt/a(t),

ds2 = −dt2 + a2(t)dx · dx = a2
(
−dη2 + dx · dx

)
. (14.108)

The g̃μν element takes the same form in conformal coordinates, but note that
its different scale factor implies a different co-moving time,

ds̃2 = ã2
(
−dη2 + dx · dx

)
= −dt̃ 2 + ã2(t̃ )dx · dx . (14.109)

From relation (14.104) we infer,

3 For a somewhat different construction which achieves the same end, see [17, 52].
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a(t) = ã(t̃ ) exp
[
−
√

πG

3
ϕ0(t̃ )

]
. (14.110)

We denote differentiation with respect to η by a prime, and one should
note the relation between derivatives with respect to the various times,

∂

∂η
= a

∂

∂t
= ã

∂

∂t̃
. (14.111)

Differentiating the logarithm of (14.110) with respect to η and using the re-
lation (14.8) between ã and ϕ0 gives,

a′

a
=

ã′

ã
−
√

πG

3
ϕ′

0 =
ã′

ã
−
√
− 1

12
ã′ . (14.112)

This is a nonlinear but first order differential equation for the variable ã in
terms of the known function, a(t(η)). At the worst it can be solved numerically.

Once we have ã the potential V (ϕ) can be constructed using the procedure
explained in the Introduction. We then compute the auxiliary potential,

U(φ) = 16πGφ2V
(√ 3

4πG
ln(φ)

)
. (14.113)

The auxiliary field can be expressed in terms of the Ricci scalar from the
algebraic relation,

U ′(φ) = R ⇐⇒ φ = Φ(R) . (14.114)

And we finally recover the function f(R) by Legrendre transformation,

f(R) =
(
Φ(R)−1

)
R− U

(
Φ(R)

)
. (14.115)

14.5 Problems with f(R) = −µ4

R

In view of the construction of Sect. 14.4.3 it is not surprising but rather in-
evitable that an f(R) can be found to support late time acceleration, or indeed,
any other evolution. However, the method is not guaranteed to produce a sim-
ple model, so the discovery that f(R) = −μ4/R works is quite noteworthy
[53, 54].4 It may also be significant that models of this type seem to follow
from fundamental theory [56].

To derive acceleration in this model consider its field equations,

(
1+

μ4

R2

)
Rμν −

1
2

(
1− μ4

R2

)
Rgμν +

(
gμν −DμDν

) μ4

R2
= 8πGTμν . (14.116)

4 Although extensions involving RμνRμν and RρσμνRρσμν have also been studied
[55], they must be ruled out on account of the Ostrogradskian instability.
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Setting Tμν=0 and searching for constant Ricci scalar solutions gives,

(
1+

μ4

R2

)
Rμν −

1
2

(
1− μ4

R2

)
Rgμν = 0 ⇐⇒ Rμν = ±

√
3

4
μ2gμν .

(14.117)
The plus sign corresponds to acceleration

In addition to proposing the model, Carroll, Duvvuri, Trodden and Turner
[53] also showed that it suffers from a very weak tachyonic instability in the
absence of matter. Because the only new higher derivative degree of freedom
resides in the Ricci scalar, we may as well derive an equation for it alone from
the trace of (14.116),

−R +
3μ4

R
+

(3μ4

R2

)
= 0 . (14.118)

Now perturb about the accelerated solution,

R = +
√

3μ2 + δR =⇒ −2δR− 2√
3μ2

δR + O(δR2) = 0 . (14.119)

By comparing the linearized equation for δR with that of a positive mass-
squared scalar,

( −m2)ϕ = 0 , (14.120)

we see that δR behaves like a tachyon with m2 = −
√

3μ2. However, be-
cause explaining the current phase of acceleration requires μ ∼ 10−33 eV,
the resulting instability is not very serious. I should note that the existence
of a tachyonic instability in no way contradicts the Ostrogradskian analysis
that this model’s higher derivative degree of freedom carries positive kinetic
energy.

14.5.1 Inside Matter

Dolgov and Kawasaki [57] showed that a radically different result emerges
when this model is considered inside a static distribution of matter,

Tμν = ρδ0
μδ

0
ν with 8πGρ ≡M2 � μ2 . (14.121)

In that case the trace of (14.116) gives,

−R +
3μ4

R
+

(3μ4

R2

)
= −M2 . (14.122)

As might be expected, the static Ricci scalar solution in this case is dominated
by M rather than μ,

R0 =
1
2

(
M2+

√
M4+12μ4

)
�M2 . (14.123)
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Perturbing about this solution gives,

R = R0 + δR =⇒ −δR− 3μ4

R2
0

δR− 6μ4

R3
0

δR + O(δR2) = 0 . (14.124)

Comparing with the reference scalar (14.120) now reveals an enormous
tachyonic mass,

m2 = −R0

2
− R3

0

6μ4
� −M6

6μ4
! (14.125)

Plugging in the numbers for the density of water (ρ ∼ 103 kg/m3) gives M ∼
10−18 eV, implying a tachyonic mass of magnitude |m| ∼ 1012 eV = 103 GeV!

As disastrous as this problem might seem, Dick [58] and Nojiri and
Odintsov [59] have shown that it can be avoided by changing the model
slightly,

f(R) = −μ4

R
+

α

2μ2
R2 =⇒ −R+

3μ4

R
+ 3

( μ4

R2
+

α

μ2
R
)

= 0 . (14.126)

Because an R2 term has global conformal invariance, it makes no contribution
to the trace for constant R. Hence the cosmological solution of R = +

√
3μ2 is

not affected, nor is the static solution inside the matter distribution (14.121).
However, the equation for linearized perturbations inside matter changes to,

− δR− 3μ4

R2
0

δR + 3
(
−2μ4

R3
0

+
α

μ2

)
δR = 0 . (14.127)

The instability of Dolgov and Kawasaki was driven by the smallness of 2μ4/R3
0.

By simply taking α positive and of order one the tachyon becomes a positive
mass-squared particle of m2 ∼ μ2/α.

14.5.2 Outside Matter

Marc Soussa and I analyzed force of gravity outside a matter distribution [60].
Although our analysis was for the original f(R) = −μ4/R model, there would
be only slight differences for the extended model (14.126). So our result seems
to foreclose this possibility, but see [61].

The tachyonic instability could be studied using the perturbed Ricci scalar,
but the gravitational force requires use of the metric. We perturbed about
the de Sitter solution with Hubble constant H = μ/(48)

1
4 in co-moving

coordinates,

ds2 = −(1−h00)dt2+2a(t)h0idtdx
i+a2(t)(δij+hij)dxidxj with a(t) = eHt .

(14.128)
In the gauge,

h ,ν
μν −

1
2
hμ + 3h ν

μ [ln(a)],ν = 0 , (14.129)
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with h ≡ −h00+hii, the perturbed Ricci scalar takes the form,

δR = −1
2
∂2h + 2H∂0h . (14.130)

Our strategy was first to solve the de Sitter invariant equation for the per-
turbed Ricci scalar, then reconstruct the gauge-fixed metric.

We assumed a matter density of the form,

ρ(t,x) =
3M

4πR3
g

θ
(
Rg − a(t)|x|

)
. (14.131)

The exterior field equation has a simple expression in terms of the coordinate
y ≡ a(t)H |x|,

[(
1−y2

) d2

dy2
+

2
y

(
1−2y2

) d

dy
+ 12

]
δR = 0 . (14.132)

The solution takes the form,

δR = β1f0(y) + β2f−1(y) , (14.133)

where f0 and f−1 are hypergeometric functions whose series expansions are,

f0(y) = 1− 2y2 +
1
5
y4 + . . . , (14.134)

f−1(y) =
1
y

(
1− 7y2 +

14
3

y4 + . . .
)

. (14.135)

We only need the behavior for small y because y = 1 is the Hubble radius!
Matching to the source at y = HRg determines the combination coefficients
to be,

β1 �
3GM

R3
g

, β2 � −12GMH3 . (14.136)

This last step might seem bogus because we needed to regard the mass density
as a small perturbation on the cosmological energy density μ4, whereas the
opposite would be the case for galaxies or clusters of galaxies. However, this
will only make changes of order one in the βi’s. In particular, the asymptotic
solution must still take the form (14.133).

The next step is solving for the trace of the perturbed metric. It turns out
that relation (14.130) can also be expressed very simply using the variable y,

[(
y2−1

) d

dy
+

1
y

(
5y2−2

)]
h′(y) =

2
H2

δR . (14.137)

We only need to solve for the derivative of h because that is what gives the
gravitational force in the geodesic equation. The solution is,
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h′(y) = − 2GM

H2R3
g

y + O(y3) . (14.138)

This should be compared to the general relativistic prediction,

h′
GR(y) = −4GMH

y2
+ O(1) =⇒ h′

h′
GR

=
1
2

(‖x‖
Rg

)3

. (14.139)

One consequence is that the force between the Milky Way and Andromeda
galaxies would be about a million times larger than predicted by general
relativity!

14.6 Conclusions

The potential of a quintessence scalar can be chosen to support any cosmology,
but the epicyclic nature of this construction suggests we consider modifications
of gravity. Ostrogradski’s theorem [18] limits local modifications of gravity
to just algebraic functions of the Ricci scalar. Models of this form can give
a late phase of cosmic acceleration such as we are currently experiencing.
However, they can be tuned to give anything else as well. They seem every
bit as epicyclic as scalar quintessence. Further, the f(r) = −μ4/R model is
problematic, both inside and outside matter sources.5

An interesting and largely overlooked possibility for modifying gravity is
the fully nonlocal effective action that results from quantum gravitational
corrections. In weak field perturbation theory it has long been known that
the most cosmologically significant one loop corrections are not of the R2

form usually studied but rather of the form R ln( )R [63]. More potentially
interesting is the possibility of very strong infrared effects from the epoch of
primordial inflation [64, 65].

It can be shown that quantum gravitational corrections to the inflation-
ary expansion rate grow with time like powers of ln(a). Although suppressed
by very small coupling constants, the exponential growth in a(t) during in-
flation must eventually cause the effect to become nonperturbatively strong
[66, 67]. Similar secular growth occurs as well for minimally coupled scalar
field theories [68, 69], in which context Starobinskĭı has developed a tech-
nique for summing the leading powers of ln(a) at each loop order [70, 71].
If Starobinskĭı’s technique can be generalized to quantum gravity [72, 73] it
might result in a nonlocal effective gravity theory for late time cosmology in
which a large, bare cosmological constant is almost completely screened by
a nonperturbative quantum gravitational effect. In such a formalism the cur-
rent phase of acceleration might result from a very slight mismatch between

5 Observations also rule out the somewhat different version of this model that
results from regarding the connection and the metric as independent, fundamental
variables in the Palatini formalism [62].
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the bare cosmological constant and the quantum effect which screens it. It is
even conceivable that one could reproduce the phenomenological successes of
MOND [3, 4] with such a nonlocal metric theory, although it would have to
unstable against decay into galaxy-scale gravitational waves [74].
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71. A.A. Starobinskĭı and J.Yokoyama, Phys. Rev. D 50, 6357 (1994), astro-ph/-
9407016. 430

72. R.P. Woodard, Nucl. Phys. Proc. Suppl. 148, 108 (2005), astro-ph/0502556. 430
73. N.C. Tsamis and R.P. Woodard, Nucl. Phys. B 724, 295 (2005), gr-qc/0505115.

430
74. M.E. Soussa and R.P. Woodard, Phys. Lett. B 578, 253 (2004), astro-

ph/0307358. 431



Index

Acoustic Oscillations, 199

AdS/CFT Correspondence, 342

Axino, 14, 15, 48

Axion, 4, 5, 28, 36

Bekenstein-Area Law, 338

Big Rip, 192, 282

Bogomolnyi-Prasad-Sommerfield (BPS)
bound, 339

Boltzmann Equation, 10, 48

Brans-Dicke Theory, 387

Calabi-Yau Space, 317

Chaplygin Gas, 191

Cluster of Galaxies, 126, 383

Cold Dark Matter (CDM), 3, 37, 69,
106, 117, 132, 323, 376

Conformal Invariance, 346, 358

Cosmic Acceleration, 222, 234

Cosmic Horizon, 334

Cosmic Microwave Background (CMB),
103, 131, 175, 179, 192

Cosmic Super Acceleration, 224

Cosmic Variance, 194

Cosmological Constant, 189, 236, 312

D-Branes, 294, 309, 325

De Sitter Universe, 336

Density Perturbations, 129

Dilaton Field, 316, 344, 354, 366

Dirac-Born-Infeld action (DBI), 232

Fixed Points, 241
Friedmann-Robertson-Walker (FRW)

model, 220, 250
Friedmann-Robertson-Walker metric,

37

Galaxies Rotation Curves, 382
Gauss-Bonnet Brane Model (GB), 228
Gibbons–Hawking Term, 313
Goldstino, 304
Gravitational Collapse, 127
Gravitational Lensing, 105, 111, 126,

195, 390, 391
Gravitino, 17, 18, 61, 303

Hawking Temperature, 338
Helmholtz Conditions, 360
Holography, 341, 342
Hot Dark Matter (HDM), 37
Hubble Constant, 38
Hubble Diagram, 41, 260, 268
Hybrid Inflation, 20, 26

Induced Gravity Model, 313, 327
Integrated Sachs-Wolfe Effect, 209
Isocurvature Perturbations, 5, 28

Kaluza-Klein (KK) Excitations, 297
Kaluza-Klein (KK) Modes, 326

Large-scale Structure, 106, 125, 199
LCDM Model, 273, 278, 324
Light Supersymmetric Particle (LSP),

6, 8, 17, 48, 54, 72



436 Index

Linear Perturbations, 242
Liouville Strings, 357
Luminosity Distance, 258, 268, 275

Matter Perturbations, 159
Minimal Supersymmetric Standard

Model (MSSM), 4, 6, 55
Modified Newtonian Dynamics

(MOND), 377, 404
Modulation Effect, 92

Neutralino, 8, 9, 56, 74, 118
Non-Baryonic Dark Matter, 103, 126,

236, 404

Orbifold, 317
Ostrogradski Theorem, 407

Phantom Field, 192, 245
Pre Big Bang Cosmology, 350

Quintessence, 191, 243, 248
Quintessential Inflation, 249

Radion, 302, 303
Randall-Sundrum Model (RS), 228, 328

Raychaudhuri Equation, 190
Reheating Mechanism, 251
Rolling Tachyon, 231

Sachs-Wolfe Effect, 189, 198
Sloan Digital Sky Survey (SDSS), 172
Sunyaev-Zeldovich (SZ) Effect, 139, 203
Superluminal Propagation, 388
Supersymmetry, 54, 70, 117, 190, 238,

294

Tachyon Field, 246, 362
Tensor-Vector-Scalar (TeVeS) Theory,

377
Thermal Universe, 42
Tully-Fisher Relation, 378
Type Ia Supernovae (SnIa), 41, 103,

155, 262, 263

Unruh Radiation, 399

Virial Theorem, 130, 390

Warped Compactification, 232
Warped Space, 312
Weak Gravitational Lensing, 208


	Part I Dark Matter: The Missing Matter of the Universeas Seen by Astroparticle Physics and Astrophysics
	1 Particle Physics Approach to Dark Matter
	George Lazarides
	Introduction
	Axions
	Salient Features of MSSM
	Neutralino Relic Abundance
	Axinos
	Gravitinos
	Yukawa Quasi-Unification
	Conclusions
	References

	2 LSP as a Candidate for Dark Matter
	Athanasios Lahanas
	Introduction
	The Energy -- Matter Content of the Universe
	The Thermal Universe
	Dark Matter
	Calculating DM Relic Abundances
	Supersymmetry and its Cosmological Implications
	Conclusions
	References

	3 On the Direct Detection of Dark Matter
	John Vergados
	Introduction
	The Nature of the LSP
	The Feynman Diagrams Entering the Direct Detection of LSP
	Going from the Quark to the Nucleon Level
	The Nucleon Cross Sections
	The Allowed SUSY Parameter Space
	Rates
	Expressions for the Rates
	Bounds on the Scalar Proton Cross Section
	Exclusion Plots in the ap,an and p,n Planes
	The Modulation Effect
	Transitions to Excited States
	The Directional Rates
	Observation of Electrons Produced Duringthe LSP-nucleus Collisions
	Conclusions
	References

	4 Galaxy Formation and Dark Matter
	Joseph Silk
	Introduction
	Precision Cosmology
	The Global Baryon Inventory
	The ``Missing" Baryons
	Large-scale Structure and Cold Dark Matter: The Issues
	Resurrection via Astrophysics
	What Determines the Mass of a Galaxy?
	Disk Galaxy Formation
	Spheroidal Galaxy Formation
	Numerical Simulations
	The Case for Positive Feedback
	Observing Cold Dark Matter: Where Next?
	Summary
	References

	Part II Dark Energy: The Energy Balance of the Universe within the Standard Cosmological Model
	5 Cosmological Parameters from Galaxy Clusters: An Introduction
	Paolo Tozzi
	Introduction
	Clusters of Galaxies in a Cosmological Context
	From Observations to Cosmological Parameters
	New Physics and Future Prospects
	What to Bring Home
	References

	6 Cosmological Constraints from Galaxy Clustering
	Will Percival
	Introduction
	Basics
	Matter Perturbations
	The Evolution of Perturbations
	Galaxy Survey Analysis
	Practicalities
	Results from Recent Surveys
	Combination with CMB Data
	References

	7 Dark Energy and the Microwave Background
	Robert Crittenden
	Introduction
	Models for Dark Energy
	The Physics of the Microwave Background
	Ways of Probing Dark Energy
	The Integrated Sachs-Wolfe Effect
	Conclusions and Future Prospects
	References

	8 Models of Dark Energy 
	M. Sami
	Glimpses of FRW Cosmology
	Cosmological Constant 
	Dynamically Evolving Scalar Field Models of Dark Energy
	Scaling Solutions in Models of Coupled Quintessence
	Quintessential Inflation
	Conclusions
	References

	9 Accelerating Universe: Observational Status and Theoretical Implications
	Leandros Perivolaropoulos
	Introduction
	Expansion History from the Luminosity Distances of SnIa
	Observational Results
	Dark Energy and Negative Pressure
	Dynamical Evolution of Dark Energy
	The Fate of a Phantom Dominated Universe: Big Rip
	Future Prospects-Conclusion
	References

	Part III Dark Matter and Dark Energy Beyond the Standard Theory of General Relativity
	10 The Physics of Extra Dimensions
	Ignatios Antoniadis
	Introduction
	Framework
	Experimental Implications in Accelerators
	Supersymmetry in the Bulk and Short Range Forces
	Electroweak Symmetry Breaking
	Standard Model on D-branes
	Non-compact Extra Dimensions and Localized Gravity
	References

	11 Dark Energy from Brane-world Gravity 
	Roy Maartens
	Introduction
	KK Modes of the Graviton
	DGP Type Brane-worlds: Self-accelerating Cosmologies
	Conclusion
	References

	12 The Issue of Dark Energy in String Theory
	Nick Mavromatos
	Introduction
	De Sitter (dS) Universes from a Modern Perspective
	No Horizons in Perturbative (Critical) String Theory
	Dilaton Quintessence in String Theory
	Conclusions
	References

	13 Modified Gravity Without Dark Matter
	Robert Sanders
	Introduction
	The Phenomenology of MOND
	Relativistic MOND
	TeVeS: Successes, Issues and Modifications
	Conclusions
	References

	14 Avoiding Dark Energy with 1/R Modifications of Gravity
	Richard Woodard
	Introduction
	The Theorem of Ostrogradski
	Common Misconceptions
	R[g] = f(R) Theories
	Problems with f(R) = -4R
	Conclusions
	References

	Index



















<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




